SCRIPPS REFERENCE GAS CALIBRATING SYSTEM FOR CARBON DIOXIDE IN AIR STANDARDS: REVISION OF 1983

A REPORT PREPARED FOR THE ENVIRONMENTAL MONITORING PROGRAM OF THE WORLD METEOROLOGICAL ORGANIZATION

by

C. D. Keeling, P. R. Guenther, and M. A. Jones

Central CO₂ Laboratory of the World Meteorological Organization

Scripps Institution of Oceanography La Jolla, California 92093

January, 1984

Prepared for

U.S. National Bureau of Standards Contract No. NB83-SBCA-2071

Table of Contents

•

1.	Introduction	3
2.	Manometric Calibrations	4
3.	Infrared Analyzer Calibrations	7
4.	System Drift	10
5.	Nomenclature and symbols	11
6.	Equations to Correct for System Drift	12
7.	Equations to Convert Index Values to Mole Fractions	16
8.	Test of the Validity of the Formulation	18
9.	Source Block Correction	20
10.	Pressure Correction to XAIR	22
11.	Comparison with previous calibration	24
 12.	Computer program	25
Ref	erences	26
Tab	les	28
For	tran Program	57
Fig	ures	64

-

-

>

9

- 2 -

۲ ب

1

1. Introduction

This report describes extensive calibrations carried out in October and November, 1983. These calibrations establish a new system of carbon dioxide in air $(CO_2$ -in-air) primary reference gas standards to be used in the Base Line Monitoring Program of the World Meteorological Organization (WMO). This set of standards supercedes carbon dioxide in nitrogen $(CO_2$ -in-N₂) standards in use since the beginning of the Scripps carbon dioxide program in 1957. The WMO provisionally adopted these CO_2 in-N₂ standards to calibrate non-dispersive infrared gas analyzers used to measure atmospheric carbon dioxide at a worldwide network of stations under the name "BAPMON" (for Baseline Atmospheric Pollution Monitoring Network).

Since 1 January, 1983 the Scripps Carbon Dioxide Program has been under Contract with the United States Bureau of Standards to maintain primary reference gases. This report is submitted as an annual summary of activities under this contract.

The 1983 calibrations, here reported, involve extensive measurements of both $\rm CO_2$ -in-air and $\rm CO_2$ -in-N₂ standards. These measurements provide a close comparison of the two types of standards at the time of change over to the new standards. As such, they also provide detailed new data on the $\rm CO_2$ -in-N₂ system, in prior use. We intend to carry out one additional set of calibrations of the $\rm CO_2$ -in-N₂ standards in 1984 before discontinuing there use, but this final determination will be mainly to guarantee their performance as standards during the coming interim period when these $\rm CO_2$ -in-N₂ standards, necessarily still in use, are retired and replaced with the new standards. The present

calibrations, extensive and closely tied to the CO₂-in-air standards, will serve to provide final concentration values and calibration equations for CO₂-in-air standards for the period up to 18 November, 1983, the central date of the 1983 calibration. Such final values for 1983, however, will not be determined until after the 1984 calibration, because of the need for post-calibration data to verify the stability of performance of the manometer in 1983. Changes in the reported 1983 data will probably be too small, however, to affect field calibrations in any significant way.

The present report is written primarily to describe the new 1983 data. The terminology and mathematical development follow closely three previous reports [Bacastow et al., 1983a, b, and Keeling et al., 1983] to which the reader is referred for background information. By way of summary, however, some of the tables of data recapitulate tables appearing in the three previous reports, and in additional earlier manometric reports [Guenther, 1978a, b, 1981, and Guenther and Keeling, 1981]. A few small errors in tabular entries found in the three previous calibration reports are corrected. These errors have been noted in revisions of the earlier reports. The latter are, indeed, being finally issued contemporaneously with this fourth report.

2. Manometric Calibrations

All of the gas mixtures involved in the 1983 infrared analyzer calibration were analyzed manometrically during 1983, between 16 August and 9 November. In all cases these mixtures have been previously measured manometrically: most of the CO_2 -in-N₂ mixtures in 1980, and all of the CO_2 -in-air mixtures in 1981. It was necessary to replace one of the

- 4 -

 CO_2 -in-N₂ mixtures in 1982, and at that time one additional CO_2 -in-N₂ mixture was also introduced.

The manometric data of 1983 are listed in Tables 1a to 1b. These data are subject to small adjustments (maximum 0.02 ppm) because only preliminary meniscus corrections were used. Also, as noted below, the manometric 4/5000 cc volume ratio used in the computations is provisional. The entire set of manometric calibrations of Scripps primary gas standards from 1970 through 1983 are summarized in Tables 1c to 1e. The measurements are reported as mole fractions in parts per million by volume (ppm). The CO_2 -in-air standards were obtained by pumping air at the Scripps Diving Locker Facility using a Rix water lubricated piston compressor pump [Keeling et al., 1983]. The air was pumped only on days when it was essentially free of industrial pollution. Ascarite was used to reduce the CO_2 concentration for the lower concentration mixtures, and CO_2 from commercial compressed CO_2 (derived from limestone) was used to prepare the higher concentrations.

The manometric determinations were made by first expanding gas from the high pressure cylinders into a 5000cc calibrated glass volume where the pressure and temperature were determined. This aliquot of the gas mixture was then passed through a concentric spherical trap chilled with liquid nitrogen which removed CO_2 , N_2O , and water vapor. The trapped gases were sublimed into a glass U trap using liquid nitrogen refrigerant, and subsequently sublimed three more times at dry ice temperature to remove water vapor. The dried sample was then transferred with liquid nitrogen to the inside of another chamber of the manometer. The gas was warmed and confined to a volume of approximately 4 cc by bring-

- 5 -

ing a column of mercury to a glass pointer. The pressure and temperature were measured and the mole fraction determined using the equations of state of air and CO_2 . For additional details see Guenther [1978a].

The amount of N_2^0 in the sample was determined by gas chromotography in the laboratory of Dr. Ray Weiss at Scripps, and this amount was subtracted to produce the mole fraction data in Tables 1c-1e. The original mole fractions and N_2^0 concentrations are listed in the reports of Bacastow et al. [1983b] and Keeling et al. [1983].

The ratio we found for the 4 cc to the 5000 cc volumes of the manometer has been determined several times. The same average value (1320.61 cc) was used in all of the determinations reported prior to In 1982, using this volume ratio, we found for six gas mixtures 1983. furnished by the National Bureau of Standards manometric mole fractions in close agreement with gravimetric determinations made at the Bureau. There is no evidence, as indicated by the data in Tables lc and ld, that the volume ratio changed significantly between 1970 and 1982, thus confirming the validity of this ratio to a high precision. In 1983 both CO_2 -in-N₂ and CO_2 -in-air gas mixtures showed a small shift towards lower manometric concentrations, however. This shift was roughly proportional to mole fraction. The 5000cc volume was not checked, but it is highly unlikely that it changed significantly. The 4cc volume, on the other hand, showed evidence of change on the basis of comparisons with lcc and 16cc volumes of the same manometer. Pending a redetermination of the 4 cc volume, we have applied a correction to the volume to reduce to zero the average shift in concentration of the 23 gas mixtures measured in 1983 relative to the average mole fractions found previously. The

- 6 -

ĺ,

volume ratio thus used for 1983 is 1319.61 cc.

5

Prior to October 1978 the manometer was used only very infrequently and almost entirely for measuring primary gas standards. It then was put to use to measure CO_2 collected from sea water samples with a large number of samples measured from 1981 through July, 1983. The mercury surfaces of the columns have shown increasing discoloration during this time, and we believe that contamination from sea water samples has begun to affect the manner of approach of the mercury column to the glass pointer, which can be influenced by static electric charges [Guenther, 1978b]. We intend to put into use a second manometric system, already constructed, for analysis of sea water, in order to avoid further risk of contamination of the manometer used for calibrating standard gases.

The manometer performed well in 1983. The standard deviation of replicate analyses of CO_2 -in-N₂ and CO_2 -in-air combined (23 sets) was 0.041 ppm down from 0.048 ppm in 1982 (12 sets), 0.071 ppm in 1981 (12 sets), and 0.058 ppm in 1980 (24 sets, including CO_2 -in-N₂+O₂).

3. Infrared Analyzer Calibrations

All 23 of the gas mixtures of the 1983 calibration were compared with three gas mixtures of the Scripps CO_2 -in-N₂ standard system on five special test periods, each lasting approximately 22 hours. The same Applied Physics Corporation (APC) nondispersive infrared gas analyzer was used as in the previous calibrations. No significant alterations to the optical system of the analyzer were made through the entire period from the 1980 to the 1983 calibration, except for replacement of the ascarite absorption tube on the source block on 30 October, 1980. As

- 7 -

reported by Bacastow et al. [1983a] this replacement produced a change in the relative sensitivity of the instrument to CO_2 -in-air compared to CO_2 -in-N₂. The shift was estimated to be 0.11 ppm for mixtures near natural air in concentration. (CO_2 -in-air gas mixtures analyzed higher after the replacement.) The extent of this shift is redetermined in section 9, below.

The infrared data are expressed in index units, I, proportional to the response of the APC analyzer, as explained by Bacastow et al., [1983a]. For mixtures near the concentration of natural air, a computation of an adjusted index scale, J, brings these values close to the manometric mole fractions, the latter denoted by the symbol, X. The data for all calibrations of primary standards from 1974 through 1983 are listed in Tables 2a to 2h. Averages for each test period (individual days except in 1983) are shown with the number of individual comparisons against the Scripps System gases listed within parentheses. Nonweighted index averages have been calculated in preference to weighted averages on the grounds that systematic shifts in instrument performance from test period to test period were more likely to influence the results than random shifts. The nonweighted averages in index units, I, are converted to adjusted index units, J, by the formula:

$$J = 1.2186 (I - 3.11.51) + 311.51$$
(1)

which defines the J scale, and has been in use since 1959.

In preparing these new tables, we have not been able to reproduce exactly the averages obtained by Bacastow et al. [1983a and b]. For data prior to the central date of the 1980 calibration (19 September,

- 8 -

÷.,

1980) we have not modified the formulation of Bacastow et al. [1983a] because the differences are too small to affect significantly the calibration adjustment equations employed. It is possible, that we will subsequently reexpress these formula in a simpler form for more efficient computations. If we do so, we will then employ the averages of J listed in this report.

As discussed below, all calibration equations subsequent to the 1980 calibration central date are redetermined in this report. The equations of Bacastow et al. [1983b] and Keeling et al. [1983] are therefore no longer recommended for use.

In 1981 and 1982 the CO₂-in-air gas mixtures were measured in two sets in order to achieve test periods terminating in one working day. Tables 2d and 2f indicate the averages for each set followed by combined averages for those cases where varying numbers of cylinders were calibrated on alternating days. The latter averages are used subsequently for curve fitting, as discussed below. The data for 1983 are based on a preliminary computation of the data of Reference Gas Report 44. Because the average adjusted index values, as listed in Tables le and lh, changed only negligibly (by not over 0.03 ppm) when a final computation was made, it was not deemed necessary to incorporating these changes in the present report. Some additional infrared data not obtained on special calibrating dates, are listed in Table 3 and discussed in Section 6, below.

- 9 -

`٦

4. System Drift

١

The principal gas mixtures, used during routine calibrating at Scripps, consist of a principal span and high span gas with concentrations lying, respectively, below and above natural air as measured over the time period 1959 to 1983. A secondary gas with a concentration close to that of the principal span gas is also used.

The special calibrations with the APC analyzer at Scripps as reported here also employ these three gas standards. These special calibrations thus serve to establish the correct concentrations of these standards at the time of the calibrations. Over the course of the project these standards became depleted and were replaced by new ones measured against the previous set. This overlap, indeed, produces what we call our "system" of gas standards, as explained by Bacastow et al. [1983a].

We have found that this system drifts in index, I (and thus also in J), and that the rate tends to be proportional to the number of replacements. Between 1959, when the first manometric calibration took place, and 1974, the third such calibration, the apparent drift rate for concentrations of $\rm CO_2$ -in-N₂ gases near the mole fraction of natural air was on average 0.06 ppm per year. As shown in Table 4, the rate from 1974 until 1980 was on average 0.10 ppm per year, while it was 0.16 ppm per year from 1980 to 1983.

The recently increased rate reflects, evidently, the greater amount of calibrating activity since 1980.

To allow for this drift in the Scripps system, we have not combined the data of Tables 2a to 2h into grand averages, but have made separate use of the data for each individual calibration period, as we will now explain.

5. Nomenclature and symbols

To explain the calculations used in this report we use the same terminology as previously. The main terms and their definitions are as follows:

J

١

3

adjusted index (proportional to Applied Physics Analyzer response).

T designator of a special period of calibration (e.g. T = 60, 74, 80 for the periods in 1960, 1974, and 1980 used to determine JA as described in the next section).

JT average adjusted index obtained for a given gas mixture during special period, T.

X observed CO₂ mole fraction of a gas mixture based on manometric measurements.

X83 average CO₂ mole fraction based on manometric measurements from 1970 through 1983, as quoted in Tables, lc to le in the column labeled "average".

CDT central date of special period, T. This central date is a weight average date for a special period of calibration under consideration. date of a given determination of J not necessarily occurring during a special period.

6. Equations to Correct for System Drift

D

Since the system drift has occurred in the overlapping Scripps principal span and high span gas standards, it applies only to gas mixtures of CO_2 -in-N₂. (This will now change as we adopt a new system employing CO_2 -in-air standards in 1984). Of the eleven CO_2 -in-N₂ mixtures measured in the special calibration of 1983, nine were also included in the 1980 calibration. The other two were at that time second level surveillance standards analyzed approximately every three months. The infrared comparisons obtained on nearby three-monthly test days permit us to determine their J values close to the time of the 1980 special calibration. These data are summarized in Table 3. Using the drift corrections as prescribed by Bacastow et al. [1983b], we find that the weighted averages are altered by, at most, 0.03 ppm, if drift corrected. Therefore, we have accepted the data without correction as though the gas mixtures had been run on the special calibrating days.

With J values now assigned for all 11 CO_2 -in-N₂ mixtures in 1980 and 1983, we establish the system drift between the central dates (CD's) of the 1980 and 1983 calibrations. The best estimate of this drift involves taking advantage of the smoothing inherent when we fit the J values of each calibration to the manometric data. The latter are taken as single, time independent, values for each gas mixture, i.e. the same manometric values are assigned to both 1980 and 1983. We obtain excellent fits to the data by assuming that these time independent values, X83, are a cubic power series in J.

- 12 -

Our first step is thus to fit, by least squares, J80 and J83 versus X83. We obtain the relations:

$$X83 = CUB9 (J80)$$
 (2)

$$X83 = CUB10 (J83)$$
 (3)

where we continue the numbering of equations from those employed by Bacastow et al. [1983a]. (We disregard the numbering of equations by Bacastow [1983b] and Keeling et al. [1983]). The coefficients of these expressions are listed in Table 5. Owing to drift, as shown in Figure 1, they predict significantly different relations between J and X for 1980 and 1983.

We remove most of the drift in the system by assuming it to be linear with time between CD80 and CD83. To make use of equations (2) and (3) we perform the interpolation in X83 units instead of J. Because the drift is over a range less than 2 ppm, the time rate of change in J and X at any given mole fraction is very nearly equal between CD80 and CD83. Thus we carry out the interpolation by computing:

$$X9 = CUB9 (J) \tag{4}$$

$$X10 = CUB10 (J)$$
(5)

XINTERP =
$$\left(\frac{CD83 - D}{CD83 - CD80}\right) X9 + \left(\frac{D - CD83}{CD83 - CD80}\right) X10$$
 (6)

XINTERP is, indeed, the sought after mole fraction based on assuming a linear drift in time. But, since we will apply a second level of correction based on the 1981 and 1982 calibrations in the J system, we next convert XINTERP back to the adjusted index system via the transformation:

$$JA = CUB10^{-1}(XINTERP)$$
(7)

where CUB10^{-1} is the inversion of the 1983 calibration curve to find J given X. By using CUB10 instead of CUB9 we obtain J values consistent with the most recent and, for CO_2 -in-N₂ gas mixtures, presumably final calibration curve for the Scripps APC analyzer.

For infrared data obtained prior to CD80 the formulation of Bacastow et al. [1983a] produces JA values which correct the system drift to CD80. The final step of Bacastow et al. inverts XINTERP via cubic expression, CUB2, which was obtained from the 1980 calibration, as is CUB9. The cubic, CUB2, however, employed only 9 of the 11 gas mixtures used in CUB9, plus one additional one not in the set of 11. Also the manometric data used in obtaining CUB2 were based on measurements only through 1980 rather than through 1983 (i.e. X80 instead of X83). Finally the J values of CUB2 in some cases were slightly different owing to unexplained differences in averaging, as noted above.

The computations to obtain JA do no more than drift correct J values between the designed central dates. Since the 10 gas mixtures of CUB2 were also used in 1974 to obtain CUB1, it is consistent, to employ CUB2 when interpolating before CD80, and CUB9 after CD80. Consequently for infrared analyses made prior to CD80 the formulation of Bacastow et al. [1983a] is suitable to obtain JA values based on CUB2. We will make use of this approach, as discussed below.

The calibrating data of 1981 and 1982 involve respectively 4 and 6 CO_2 -in-N₂ gas mixtures. They produce less precise calibrating curves for CD81 and CD82 than for CD80 and CD83. To allow for this we employ

these data only to make second level corrections after first computing first level corrections via JA. The latter values, corrected via equations (4) through (7) are designated JA81 and JA82. The average J values for the special calibration of 1983, equal to JA, are designated JA83.

First, the differences:

$$/J81 = JA83 - JA81$$
 (8)

were computed for each gas mixture. Then pairs of values (\angle J81, JA81, and \triangle J82, JA82) were fitted to quadratic expressions, QUAD11 and QUAD12, by least squares. The resulting relations, whose coefficients are listed in Table 5,

fit the data closely (see Table 6).

The expressions (10) and (11) were then used to calculate second level corrected J values, JB, for any given day between the appropriate central dates by linear interpolation in time. Between CD80 and CD81 (since there is no correction to JA for CD80):

$$JB = JA + (\frac{D - CD80}{CD81 - CD80})$$
 QUAD11 (12)

Between CD81 and CD82:

$$JB = JA + \left(\frac{CD82 - D}{CD81 - CD81}\right) QUAD11 + \left(\frac{D - CD81}{CD81 - CD81}\right) QUAD12$$
(13)

Between CD82 and CD83 (since there is no correction to JA at CD83):

$$JB = JA + (\frac{CD83 - D}{CD82 - CD82})$$
 QUAD12 (14)

For dates before the 1970 calibration (CD70) a third level corrected index, JC, is computed as explained by Bacastow et al. [1983a]. Between CD70 and 1980 this correction is nil, i.e.

$$JC = JB.$$
(15)

Assuming now, that all data before CD80 have been fully corrected to the JC scale and noting that, since the formulism of Bacastow et al. [1980a] has been employed, this scale is drift corrected only to CD80, we now convert all data prior to and including the date, CD80, to the new scale via the expressions

$$XSHIFT = CUB2 (JC)$$
(16)

$$JF = CUB10^{-1} (XSHIFT)$$
(17)

For data after CD80 up to and including the date, CD83, the data are fully drift corrected by equation (14), hence:

$$JF = JC = JB$$
(18)

7. Equations to Convert Index Values to Mole Fractions

The special calibration of 1983 presents us with the most detailed set of data obtained so far in the Scripps program for the purpose of determining the nonlinear instrument response of the APC analyzer. For CO_2 -in-N₂ gas mixtures this calibration, however, principally serves as a reference for defining Scripps system drift. In effect, the conversion from J to X depends equally on the CO_2 -in-N₂ calibration data obtained for each year of special calibrations. For analyses of gas mixtures made after central date CD80, in which the drift corrections up to CD83 have been made directly, we apply the equation:

$$XN_{2} = CUB10 (JB)$$
(19)

where XN_2 indicates that the mole fraction is for CO_2 -in-N₂ gas mixtures. Since from (7)

$$XINTERP = CUB10 (JA)$$
(20)

we would have obtained the final calculated value by equation (6) were it not for the second level correction to obtain JB, computed in adjusted index units.

For $CO_2 - in - N_2$ analyses on or before CD80, and especially for those on or before CD70, the corrections are more extensive. But once these corrections have been made, the data all refer to the same central date, CD80. Without computing JF, we may immediately apply the equation:

$$XN_{2} = CUB2 (JC)$$
(21)

It can be seen that XN_2 and XSHIFT are identical in value for CO_2 -in-N₂ gas mixtures analyzed on or before CD80.

For CO₂-in-air gas mixtures, the 1983 calibration is the most reliable basis for determining mole fractions. It is therefore necessary to carry the drift correction forward to CD83 for all analysis dates. The final calculation is:

$$XAIR = ACUB13 (JF)$$
(22)

where XAIR indicates that the mole fraction is for CO_2 -in-air gas mixtures and ACUB13 is a cubic equation obtained by a least squares fit of J to X for the 12 air cylinders whose data are listed in Tables 1d and 2h.

For infrared analyses carried out before October 30, 1980 a correction is applied to JF to allow for a change in the APC analyzer's source block, as discussed in section 9, below. The corrected values, JF, are obtained by the substitution

$$JF = 1.00033 JF$$
 (23)

This substitution, for concentrations near normal air, is equivalent to raising JF by 0.11 ppm. The factor is as derived by Bacastow et al. [1983b]. The results of using the above formulism to calculate mole fractions for the special CO_2 -in-air calibrations of 1981, 1982, and 1983 are compared with the direct manometric data in Tables 7a to 7c. The agreement is highly satisfactory.

8. Test of the Validity of the Formulation

A critical test of the reliability of the formulation of the previous two sections is to compute mole fractions for the CO₂-in-air gas standards analyzed on the APC infrared gas analyzer prior to central date, CD83. In previous reports by Bacastow et al. [1983b] and Keeling et al. [1983] this comparison was done indirectly and expressed by a carrier gas correction factor. The new formulation provides a means for a straight forward computation of XAIR which can be compared directly with manometric data, not only for the primary standards (white stripe cylinders) but also for the special set of 1982 standards (blue strip and NOAA cylinders) and miscellaneous standards analyzed as early as 1973 (red stripe cylinders). The data for the latter are assembled in Table 8.

First, annual average values of the difference between the infrared analyses, XAIR, and (time invarient) manometric long term average data, XMANO, are listed. For CO_2 -in-air mixtures the differences are all small, as expected since the computations of XAIR are based on a calibrating curve for CO_2 -in-air mixtures. For CO_2 -in-N₂+O₂ mixtures the differences, XAIR-XMANO, reflect varying mole fractions of oxygen. For cylinder nos. 35452 and 35434, which contain less oxygen than air, the differences are approximately 0.60 ppm more positive, reflecting the smaller shift in infrared analyzer response, from CO_2 -in-N₂, than for air. For cylinder nos. 35441 and 35442, with approximately two and three times the oxygen fraction of air, respectively, the differences, XAIR-XMANO are negative by circa 3 and 7 ppm, respectively. These results are especially useful to check on changes in infrared analyzer response because they amplify the change compared to that of CO_2 -in-air mixtures.

To obtain comparable results for all mixtures listed, the mean departures of XAIR-XMANO from their long term averages are computed. The departures for the two high oxygen mixtures are computed separately so that they can be compared with the other six mixtures, having normal or near-normal oxygen mole fractions. It can be seen that annual average departures from the long term means from 1973 through 1983 are negligibly small (i.e. less than 0.10 ppm) for all years. A satisfactory result could be seen for 1981 and 1982 from the data of Tables 7a and 7b. This eleven year history is more important, however; it indicates that both the analyzer optical system and the gas mixtures themselves have remained stable over a long time period.

9. Source Block Correction

As discussed by Bacastow et al. [1983b] the ascarite trap on the APC analyzer source block was replaced on 30 October, 1980. Bacastow et al. applied a correction factor of 1.00033 to drift corrected J as computed from data assembled in their Table 7. We have not been able to verify the data of this table because records were not kept of the analysis dates for which the 'before' and 'after' mean values were calculated. In Table 9 we list a new version of the data, and we recompute this shift. We used computed values of JF in which we reverse the correction already made by raising the observed difference by 0.11 ppm (i.e. .00033 times J) in the column labeled "/J + 0.11". In Table 9 we have included data for two gas mixtures containing two and three times normal oxygen, data not so used by Bacastow et al. [1983b]. For these mixtures, the shift in drift corrected index (/\JF) is reduced, in the entries appearing in the final column, by the ratio of oxygen concentrations in normal air to oxygen concentration in the mixture. The new factor (1.00031) is nearly identical with the previous when the data again are weighted by σ^{-2} . In our computations of XAIR we have, for convenience, retained the previous factor, since the new result is negligibly different.

To establish a date on which the source block correction should begin, we have searched our laboratory records for indications of replenishment of the ascarite. The last indication found was entered in

- 20 -

a laboratory notebook on 20 November, 1970. Records of Mr. David Moss, engineer of the CO_2 project, indicate that the entire optical system of the APC analyzer was replaced on 15 February, 1972. A few months later, on 19 June, 1972, the detectors of that replaced system were themselves replaced causing a further change in the optical system which could influence the difference in response of the analyzer to CO_2 -in-air when calibrated with CO_2 -in-N₂ standards. Subsequently no important optical changes have occurred; the detectors have been no. "119a" in the sample path, and no. "IV" in the reference path up to the present time (January, 1984). Thus 19 June, 1972 is the earliest date on which the present method of computing XAIR directly applies. It is likely that the ascarite trap was working properly at the time of installation of the new optical system, since a spent trap would have been obvious to the installer. Thus a source block correction is not justified in early, 1972, and probably not for at least a year after that time.

On several occasions between 19 June, 1972 and 19 September, 1975 electrical adjustments were made which resulted in abrupt shifts in instrument sensitivity. Nevertheless (see Table 8), XAIR values of red stripe cylinders, based on analyses as early as December, 1972, indicated no systematic shifts associated with these changes in sensitivity. Indeed, averages for XAIR for each period of constant electrical setting, agree within 0.10 ppm as do the annual averages of Table 8, from 1973 onward. These data are more consistent when a source block correction is applied back to the beginning of the analyses of the red stripe cylinders. Therefore, whether the consistency of the data of Table 8 is a result of a need for a source block correction or some unidentified compensating change in the APC analyzer, we retain the source block correction back to 19 June, 1972. Before that date, because the optical system was different, there is no basis for a further backward projection. Accordingly the correction is applied between the dates 19 June, 1972 and 30 October, 1980. (To convert drift corrected adjusted index values to XAIR before 19 June, 1972 Keeling [1984] has established "period corrections" which are applied to the adjusted index, J, before computing XAIR.)

10. Pressure Correction of XAIR

In 1975 measurements were carried out at reduced pressure. These data indicate the relative responses of the APC analyzer to standards of varying carrier gas composition as the sample cell pressure is varied. The results are summarized in Table 4 of an article by Griffith et al. [1982]. The original data do not appear in any previous Scripps Report, however, and, to make them more generally available, they are shown in Tables 10 and 11. Table 10 lists the index data obtained with the APC analyzer, and Table 11 summarizes the calculations appearing in Table 4 of Griffith et al. We will not further discuss these data because of more recent data to be considered next.

In 1981 Bacastow et al. [1983b] report additional data at reduced pressure. The sources of the data are described in that report, but it is convenient to summarize them here in a form useful for computing concentrations of CO_2 in air. We recommend their use in place of the earlier data available to Griffith et al.

- 22 -

The newer data were found to fit the equation:

$$\Delta J/J = a_1 C(1 + a_2 C) \Delta P(1 + a_3 \Delta P)$$
(23)

where ΔJ (in ppm) is the correction to be applied to the adjusted index, J; the a_1 are coefficients determined by the least squares fitting procedure, ΔP denotes the difference in pressure (in mmHg) from ambient assumed to be 760.46 mmHg, and:

$$C = (XO_2) + 1.5(XA)$$
 (24)

where %0₂ and %A denote, respectively, the mole fractions of oxygen and argon in the gas mixture after removing all water vapor. The coefficients were found to have the values:

> $a_1 = 1.51 \times 10^{-7}$ $a_2 = 8.01 \times 10^{-4}$ $a_3 = 9.48 \times 10^{-4}$

while, for normal air:

$$%0_2 = 20.946$$

%A = 0.934

Hence the parameter C is equal to 22.347 and the equation for normal air is:

$$\Delta J/J = 3.43 \times 10^{-6} \Delta P(1 + 9.48 \times 10^{-4} \Delta P)$$
 (25)

No additional information was obtained at reduced pressure in 1982 or 1983. Accordingly, it is recommended to employ the above equations in connection with the computations of this report.

11. Comparison with previous calibration

The results of computing XAIR from J by the formulism of sections 6 and 7, above, are compared in Table 12 with a similar computation based on the 1982 calibration as reported by Keeling et al. [1983]. For prescribed values of J, in increments of 10 ppm from 170 to 450 ppm, XAIR was computed both ways. The differences (1983 calibration minus 1982 calibration) are listed in Table 12 for 1 July of each year from 1957 to 1983. It can be seen that the differences are invarient from 1957 through 1980 and, in the range of CO₂ concentration in normal air, are between 0.02 to 0.05 ppm. The cause of these differences being nonzero is the substitution of a cubic equation for converting JF to XAIR based on the 1983 calibrating curve of CO2-in-air rather than the 1981 curve and a new cubic equation for CO2-in-N2 for 1980 (CUB9) to produce the drift correction from 1980 to 1983. The effect of the latter substitutions is seen in Table 13 which lists similar differences for XN2. For the concentration range of normal air the differences from 1957 to 1980 are 0.01 to 0.03 ppm for CO2-in-N2 mixtures. Thus, none of the changes when replacing the 1982 calibration with that for 1983 are significant for normal air computed up to the central date of the 1980 calibration.

For 1981, 1982 and 1983 the differences are larger, but are still scarcely significant except for 1983. This demonstrates that the recomputed drift corrections for 1981 and 1982 are not significantly different from those of Bacastow et al. [1983b] and Keeling et al. [1983]. The implimentation, for the first time, of a drift correction after the central date of the 1982 calibration has produced a change from assuming

- 24 -

no drift at all. The drift correction for normal air is approximately +0.20 ppm on 1 July, 1983.

For air data already reported using the 1982 calibration scale, there is thus no justification for a recomputation using the 1983 scale, provided that analyses precede the central date of the 1982 calibration, and are near the CO_2 concentration range of normal air (320-360 ppm).

12. Computer program

At the end of this report we list a FORTRAN subroutine which executes the calculations described in Sections 6 and 7, above. The main parameters of the program and their equivalent symbols, as given in this report, are listed.

References

Bacastow, R. B., C. D. Keeling, P. R. Guenther, and D. J. Moss, "Scripps Reference Gas Calibrating System for Carbon Dioxide in Nitrogen Standards: Revision of 1980", A report prepared for the Environmental Monitoring Program of the World Meteorological Organization, Scripps Institution of Oceanography, 1983a.

Bacastow, R. B., C. D. Keeling, P. R. Guenther, and D. J. Moss, "Scripps Reference Gas Calibrating System for Carbon Dioxide in Air Standards: Revision of 1981", A report prepared for the Environmental Monitoring Program of the World Meteorological Organization, Scripps Institution of Oceanography, 1983b.

Griffith, D. W. T., C. D. Keeling, J. A. Adams, P. R. Guenther, and R. B. Bacastow, "Calculations of carrier gas effects in non-dispersive infrared analyzers. II. Comparisons with experiment," <u>Tellus</u>, <u>34</u>, 385-397, 1982.

Guenther, P. R., "Manometer Report I: Manometric Calibrations of Primary Reference Gases During 1969 and 1970", SIO Ref. No. 78-12, Scripps Institution of Oceanography, La Jolla, California, 1-119, 1978a.

Guenther, P. R., "Manometer Report II: Manometric Calibrations of Primary Reference Gases and Internal Manometric Volume Calibrations During 1972", SIO Ref. No. 78-13, Scripps Institution of Oceanography, La Jolla, California, 1-59, 1978b.

Guenther, P. R. and C. D. Keeling, "Manometer Report III: Manometric Calibrations of Primary CO, Reference Gases During 1974", SIO Ref. No. 81-19, Scripps Institution of Oceanography, La Jolla, California, 1-71, 1981.

Guenther, P. R., "Manometer Report IV: Internal Manometric Volume Ratio Calibrations During 1974", SIO Ref. No. 81-29, Scripps Institution of Oceanography, La Jolla, California, 1-41, 1981.

Keeling, C. D., R. B. Bacastow, P. R. Guenther, and D. J. Moss, "Scripps Reference Gas Calibrating System for Carbon Dioxide in Air Standards: Revision of 1982", A report prepared for the Environmental Monitoring Program of the World Meteorological Organization, Scripps Institution of Oceanography, 1983.

Keeling, C. D., "Adjustments to Applied Physics Infrared Analyzer Data to Allow for Differences in Response of the Various Detectors Used", Scripps Institution of Oceanography, 1984.

Cylinder No.	Run No.	Date	Individual Determinations (ppm)	Run Average (ppm)	Overall Average (ppm)	No. of Runs
2408	1	25 OCT 83	196.86	196.88	196.84	3
			196.89			-
	2	25 OCT 83	196.76	196.80		
			196.84			
	3	27 OCT 83	196.84	196.83		
			196.82			
3753	1	6 OCT 83	246.02	246.08	246.08	2
			246.14			
	2	6 OCT 83	246.07	246.07		
			246.07			
7366	1	30 SEP 83	276.58	276.58	276.55	2
	2	30 SEP 83	276.50	276.52		
		,	276.53			
6078	1 .	29 AUG 83	310.81	310.76	310.75	2
			310,71			
*	2	30 AUG 83	310.74	310.74		
			310.73	010171		
2399	. 1	20, SEP 83	324,00	324.03	324,00	2
	-		324,06			
	2	20 SEP 83	323,94	323.98		
			324,02			
39239	1	16 AUG 83	332.75	332.76	332.71	5
			332.77			
	2	26 SEP 83	332.74	332.72		
			332.71			
	3	27 OCT 83	332.69	332.71		
			332.73			
	4	8 NOV 83	332.69	332.71		
			332.73			
	5	8 NOV 83	332.67	332.66		
	-		332.66			
39256	- 1	22 AUG 83	345.88	345.84	345.80	2
			345.81			
			345.82			
	2	22 AUG 83	345.96	345.77		
			345.65			
			345.70			
39272	1	17 AUG 83	360.60	360.60	360.59	2
			360.59			
	2	17 AUG 83	360.66	360.58		
			360 51			

Table 1a. Manometric analyses of CO2-in-nitrogen standards during 1983

Cylinder No.	Run No.		Date		Individual Determinations (ppm)	Run Average (ppm)	Overall Average (ppm)	No. of Runs
1540	1	28	SEP	83	380.47	380.47	380.44	2
					380.47			
	2	28	SEP	83	380.43	380.42		
					380.42			
35299	1	4	OCT	83	415.02	415.00	415.01	2
					414.98			
	2	5	OCT	83	415.11	415.02		
					414.92			
35316	1	20	OCT	83	472.79	472.73	472.72	2
					472.67			
	2	21	OCT	83	472.76	472.72		
			,		472.69			

Cylinder No.	Run No.	Date	Individual Determinations (ppm)	Run Average (ppm)	Overall Average (ppm)	No. of Runs
66556	1	31 OCT 83	101.40	101.40	101.37	2
	2	31 OCT 83	101.40	101.34		
71251	1	21 OCT 83	213.49	213.51	213.50	2
	2	25 OCT 83	213.47	213.50		
34819	1	5 OCT 83	252.04	252.04	252.05	2
	2	5 OCT 83	252.07	252.06		
71286	1	29 SEP 83	297.01 296.92	296.96	296.99	2
	2	29 SEP 83	297.00 297.03	297.02		
71341	· 1	23 AUG 83	322.56	322.56	322.54	2
	2	23 AUG 83	322.53	322.52		
66638	1	24 AUG 83	338.53 338.51	338.52	338.52	2
	2	29 AUG 83	338.51 338.53	338.52		
66625	1	30 AUG 83	344.76 344.74	344.75	344.82	4
	2	31 AUG 83	344.78 344.78	344.78		
	3	9 NOV 83	344.89 344.81	344.85		
	4	9 NOV 83	344.90 344.86	344.88		
66696	1	21 SEP 83	360.17 360.21	360.19	360.23	2
	2	21 SEP 83	360.31 360.23	360.27		
71308	1	26 SEP 83	376.53 376.53	376.53	376.52	2
	2	26 SEP 83	376.52 376.49	376.50		

Table 1b. Manometric analyses of CO2-in-air standards during 1983

Cylinder No.	Run No.	Date	Individual Determinations (ppm)	Run Average (ppm)	Overall Average (ppm)	No. of Runs
						<u></u>
71370	1	3 OCT 83	406.75	406.71	406.72	2
			406.67			
	2	4 OCT 83	406.71	406.72		
			406.72			
71479	1	7 OCT 83	453.58	453,58	453.66	2
			453,58			
	2	20 OCT 83	453.73	453.74		
			453.76			
67615	1	26 OCT 83	503.94	503.94	503.92	2
			503.93			
	2	26 OCT 83	503.95	503.90		
			503.84			
	•	••				

-

-

- 1

- 31 -

3

Table 1c. Summary of manometric measurements (in ppm), by year. The number of determinations are shown in parentheses. Averages are weighted by the number of determinations carried out that year.

CO2-IN-NITROGEN CYLINDERS

										*.									
CYL.NO.	1970)		1974	•		1980).	•••	1988	2		1983	\$		AVERP	GE	E	
2408				196.90	(2)	196.80	(2)				196.84	(3)	196.85	(7)	
3753				246.02	<	2)	245.99	C.	2)				246.08	<	2)	246.03	(6)	
7366	276.57	(3)	276.80	(2)	276.67	((2)				276.55	(2)	276.64	(9)	
6078	310.95	(7)	310.82	(3)	310.96	5	2)				310.75	(2)	310.90	(14)	
2399	324.19	(8)	324.05	(4)	324.15	(2)				324.00	(2)	324.13	()	16)	I.
39239				332.78	(2)	332.72	•	2)	332.64	(2)	332.71	(5)	332.71	()	11)	
39256										345.57	(.3)	345.80	(2)	345.66	(5)	1
10069	355.64	('4)	355.60	(2)	355.82	(2)							355.68	(8)	
39272										360.49	(3)	360.59	<	2)	360.53	(5)	,
1540				380.56	(2)	380.45	(2)				380.44	(2)	380.48	(6)	1
35299				415.06	<	2)	414.94	(2)				415.01	(2)	415.00	(6))
35316				472.97	(2)	472.72	(4)				472.72	(2)	472.78	(8)	i i
																		_	

- 32 -

Table 1d. Summary of manometric measurements (in ppm), by year. The number of determinations are shown in parentheses. Averages are weighted by the number of determinations.

CO2-IN-AIR CYLINDERS (RED STRIPES)

CYL.NO.	1974	F.		1980		AVERAGE				
35435	334.11	(3)			334.11	(3)		
35405	336.99	•	2)	336.98 (2)	336.98	(4)		
34770	338.55	C	2)	338.42 (2)	338.48	(4)		
35401	352.96	(2)	352.72 (3)	352.82	¢	5)		
35378	355.64	<	2)			355.64	(2)		

CO2-IN-N2+O2 CYLINDERS (RED STRIPES)

CYL. NO.	.1974			1980			AVERAGE		
44726	309.57	••€	2)				309.57	(2)
35452	323.86	(2)	323.66	•	2)	323.76	(4)
35434	323.91	(2)	323.80	(2)	323.86	(4)
. 35442	327.02	(2)	326.81	(2)	326.92	Ċ	4)
. 35441	332.04	(2)	331.90	(2)	331.97	(4)
35389	335.36	(2)	335.48	(2)	335.42	(4)
75934				339.04	(2)	339.04	(2)
127524				340.38	(2)	340.38	(2)
44695	351.92	(2)				351.92	<	2)
127693				361.48	(2)	361.48	<	2)

CO2-IN-AIR CYLINDERS (WHITE STRIPES)

CYL. NO.	1981			1983		AVERAGE			
66556	101.00	(2)	101.00	(2)	101.00	(4)
71251	213.15	(2)	213.16	(2)	213.16	1	4)
34819	251.72	(2)	251.81	(2).	251.76	(4)
71286	296.56	(2)	296.67	C	2)	296.62	(4)
71341	322.45	(2)	322.23	(2)	322.34	C	4)
66638	338.08	(2)	338.21	(2)	338.14	(4)
66625	344.62	<	2)	344.53	(4)	344.56	C	6)
66696	359.87	(2)	359.92	(2)	359.90	(4)
71308	376.48	(2)	376.20	(2)	376.34	(4)
71370	406.39	(2)	406.41	(2)	406.40	(4)
71479	453.40	(2)	453.36	(2)	453.38	(4)
67615	503.20	(2)	503.62	(2)	503.41	(4)

Table le. Summary of manometric measurements (in ppm) of gas mixtures in Blue Stripe cylinders (SIO) and miscellaneous cylinders (NOAA). The number of determinations are shown in parentheses. Averages are weighted by the number of determinations.

CO2-IN-AIR CYLINDERS

CYL. NO.	1983	2		TYPE
34891	297.92	(2)	SIO
3082	316.32	(2)	NOAA
3074	329.08	<	2)	NOAA
62807	338.36	(2)	SIO
3091	341.62	<	2)	NOAA
3071	352.40	(2)	NDAA
62817	365.35	<	2)	SIO
3092	366.63	<	2)	NOAA
62814	424.92	(2)	SID

TABLE 2a. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1974 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

		CO2-IN-NITR	OGEN CYLINDER	15	• • •					
CYL.NO.	23 MAY	30 MAY	, 30 JUN	27 JUN	11 JUL	05 AUG	22 AUG	09 SEP	AVG. I	AVG. J
2408	204.85 (19)	205.08 (19)	205.27 (20)	203.87 (20)	203. 57 (21)	204.39 (22)	204.72 (20)	202.87 (20)	204.33	180.90
3753	253.95 (10)	254.41 (10)	254.39 (10)	253.60 (10)	253.59 .(10)	253.93 (10)	254.28 (10)	253.14 (10)	253.91	241.32
7366	282.13 (10)	282.28 (10)	282.31 (10)	281.82 (10)	281.78 (10)	282.06 (10)	282.07 (10)	281.58 (10)	282.00	275.55
6078	311.17 (10)	311.34 (9)	311.27 (10)	311.17 (10)	311.16 (10)	311.28 (10)	311.27 (10)	310.98 (10)	311.21	311.14
35316	426.99 (19)	427.14 (19)	426.40 (20)	427.61 (20)	427.76 (20)	426.84 (20)	426.56 (20)	428.10 (20)	427.18	452.47
AVERAGE	295.82	296.05	295.93	295.61	295. 57	. 295. 70	295.78	295.33		
			Y			÷ • .				
CYL. NO.	24 MAY	31 MAY	21 JUN	28 JUN	12 JUL	06 AUG	23 AUG	10 SEP	AVG. I	AVG. J
2408	205.22 (20)	205.20 (20)	205.56 (20)	203.56 (20)	204.27 (20)	203.56 (20)	203.71 (20)	202.68 (20)	204.22	180.77
2399	321.91 (10)	321.94 (12)	322.00 (10)	322.02 (10)	321.94 (10)	321.98 (10)	322.06 (10)	321.87 (10)	321.97	324.26 W
10069	346.59 (11)	346.76 (10)	346.63 (10)	346.98 (10)	346.52 (10)	346.85 (10)	346.69 (10)	346.95 (10)	346.75	354.45
35299	389.15 (12)	389.24 (10)	388.94 (10)	390:02 (10)	389.40 (10)	389.84 (10)	389.70 (10)	390.08 (10)	389.55	406.61
35316	426.62 (19)	426.81 (21)	426.30 (20)	428.03 (18)	427.25 (20)	427.79 (21)	427.52 (20)	428.30 (20)	427.33	452.65
AVERAGE :	337.90	337.99	337.89	338.12	337.88	338.00	337.94	337.98		
CYL. NO.	10 OCT	14 OCT	17 OCT	22 0CT	30 OCT	31 OCT	01 NOV	04 NOV	AVG. I	AVG. J
6078	311.28 (10)	311.33 (9)	311.19 (11)	311.15 (10)	311.32 (10)	311.31 (10)	311.24 (10)	311.27 (10)	311.26	311.21
2399	321.83 (10)	322.05 (10)	321.95 (10)	321.96 (9)	322.13 (10)	321.87 (10)	321.88 (10)	321.88 (10)	321.94	324.22
39239	328.96 (20)	329.06 (18)	329.03 (18)	328.96 (20)	329.04 (21)	329.02 (20)	328.98 (20)	328.94 (20)	329.00	332.82
10069	346.70 (12)	346.86 (14)	346.91 (10)	346.88 (10)	346.68 (10)	346.74 (10)	346.63 (10)	346.76 (10)	346.77	354. 48
1540	365.15 (25)	365.40 (20)	365.63 (20)	365.34 (24)	365.00 (20)	365.37 (20)	365.12 (19)	365.18 (20)	365.27	377.02
35299	389.04 (12)	389.83 (10)	390.12 (12)	389.69 (10)	389.06 (10)	389.65 (10)	389.13 (10)	389.13 (11)	389.46	406. 50
AVERAGE	343.83	344.09	344.14	344.00	343.87	343.99	343.83	343.86		

Summary of Adjusted Index averages (J) for the 1974 calibration.

CYL.	NO.	AVG. J	SIGMA	NO. C	F DAILY	SETS

2428	180.83	1.10	16
3753	241.32	0.55	8
7366	275.55	0.32	8
6078	311.17	0.11	16
2399	324.23	0.10	16
39239	332.82	0.05	8
10069	354.47	0.17	16
1540	377.02	0.24	8
35299	406.55	0.50	16
35316	452.55	0. 78	16

TABLE 2b. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1980 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

. •

CO2-IN-NITROGEN CYLINDERS

CYL.NO.	04 AUG	25 AUG	22 SEP	25 SEP	30 SEP	φείοςτ	07 OCT	09 OCT	AVG. I	AVG. J
2408	201.04 (10)	201.50 (9)	200.70 (9)	200.91 (11)	201.23 (9)	201.22 (18)	200.96 (9)	201.25 (18)	201.10	176.96
3753	251.76 (10)	252.08 (9)	251.74 (9)	251.98 (9)	252.03 (9)	251.97 (9)	252.00 (9)	252.05 (9)	251.95	238.93
7366	280.44 (10)	280.65 (9)	280.54 (9)	280.57 (9)	280.68 (9)	280.59 (9)	280.62 (9)	280.67 (9)	280.60	273.84
6078	310.34 (10)	310.43 (9)	310.51 (9)	310.46 (9)	310.50 (9)	310.47 (9)	310.50 (9)	310.51 (9)	310.46	310.23
2399	321.31 (10)	321.34 (9)	321.31 (9)	321.41 (9)	321.41 (9)	321.35 (9)	321.41 (9)	321.40 (9)	321.37	323. 53 🕛
39239	328.52 (10)	328.54 (9)	328.54 (9)	328.55 (9)	328.51 (9)	328.50 (9)	328.49 (9)	328.44 (9)	328.51	332.23
10069	346.77 (10)	346.54 (9)	346.62 (9)	346.75 (9)	346.64 (11)	346.65 (13)	346.70 (9)	346.67 (9)	346.67	354.36
1540	365.34 (10)	365.08 (9)	365.20 (9)	365.37 (9)	365.37 (9)	365.41 (9)	365.33 (9)	365.41 (9)	365.31	377.07
35299	390.07 (12)	389.67 (9)	389.92 (9)	390.10 (9)	390.15 (9)	390.06 (9)	390.14 (9)	390.10 (9)	390.03	407.19
35316	428.31 (11)	427.48 (9)	428.28 (9)	428.44 (9)	428.89 (9)	428.81 (9)	428.65 (18)	428.53 (9)	428.42	453.98
AVERAGE :	322.39	322.33	322.34	322.45	322.54	322.50	322.48	322.50		

- 36 -

Summary of Adjusted Index averages (J) for the 1980 calibration.

CYL.ND. AVG. J SIGMA NO. OF DAILY SETS

2408	176.96	0.30	8
3753	238.93	0.16	8
7366	273.84	0.10	8
6078	310.23	0.07	8
2399	323.53	0.06	8
9239	332.23	0.05	8
0069	354.36	0.09	8
1540	377.07	0.15	8
5299	407.19	0.19	8
5716	457 94	0 54	A

TABLE 2c. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1981 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

. •

- 37 -

. •

. . . .

CO2-IN-NITROGEN CYLINDERS

CYL.NO.	31 AUG	Ø3 SEP	08 SEP	10 SEP	14 SEP	AVG. I AVG. J	
2408	201.02 (10)	200.95 (10)	200.57 (12)	200.96 (10)	200.84 (10)	200.87 176.68	
7366	280.66 (10)	280.70 (10)	280.53 (10)	280.70 (10)	280.62 (14)	280.64 273.89	
39239	328.34 (10)	328.39 (10)	328.41 (10)	328.44 (10)	328.34 (10)	328.38 332.07	
35316	427.81 (10)	427.81 (10)	427.72 (10)	427.87 (10)	427.70 (10)	427.78 453.20	
AVERAGE:	309.46	309.46	309.31	309.49	309.38		

Summary of Adjusted Index averages (J) for the 1981 calibration.

CYL.NO. AVG. J SIGMA NO. OF DAILY SETS

2408	176.68	0.22	5
7366	273.89	0.09	5
39239	332.07	0.05	5
35316	453.20	0.09	5

TABLE 2d. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1982 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

CO2-IN-NITROGEN CYLINDERS

CYL.NO.	09 NOV	16 NOV	23 NOV	AVG. I	AVG. J
7366	280.62 (10)	280.62 (10)	280.55 (10)	280.60	273.84
39239	328.26 (12)	328.27 (11)	328.24 (10)	328.26	331.92
39256	338.55 (10)	338.53 (10)	338.52 (10)	338.53	344.44
39272	350.00 (10)	350.03 (10)	349.99 (10)	350.01	358.43
35299	389.50 (10)	389.56 (10)	389.47 (10)	389.51	406.56
AVERAGE:	337.39	337.40	337.35		
•					
CYL.NO.	11 NOV	17 NOV	Ø1 DEC	AVG. I	AVG. J
CYL.NO.	11 NOV	17 NOV	01 DEC	AVG. I	AVG. J
7366	280,60 (10)	280.65 (10)	280.54 (10)	280.60	273.84
CYL.NO.	11 NOV	17 NOV	01 DEC	AVG. I	AVG. J
7366	280.60 (10)	280.65 (10)	280.54 (10)	280.60	273.84
39239	328.23 (10)	328.31 (10)	328.19 (10)	328.24	331.90
CYL.NO.	11 NOV	17 NOV	01 DEC	AVG. I	AVG. J
7366	280.60 (10)	280.65 (10)	280.54 (10)	280.60	273.84
39239	328.23 (10)	328.31 (10)	328.19 (10)	328.24	331.90
39256	338.51 (10)	338.53 (10)	338.52 (14)	338.52	344.42
CYL.NO.	11 NOV	17 NOV	01 DEC	AVG. I	AVG. J
7366	280.60 (10)	280.65 (10)	280.54 (10)	280.60	273.84
39239	328.23 (10)	328.31 (10)	328.19 (10)	328.24	331.90
39256	338.51 (10)	338.53 (10)	338.52 (14)	338.52	344.42
39272	350.00 (10)	350.05 (14)	350.03 (12)	350.03	358.45
CYL.NO.	11 NOV	17 NOV	01 DEC	AVG. I	AVG. J
7366	280.60 (10)	280.65 (10)	280.54 (10)	280.60	273.84
39239	328.23 (10)	328.31 (10)	328.19 (10)	328.24	331.90
39256	338.51 (10)	338.53 (10)	338.52 (14)	338.52	344.42
39272	350.00 (10)	350.05 (14)	350.03 (12)	350.03	358.45
35299	389.46 (10)	389.58 (10)	389.48 (10)	389.51	406.56
CYL.NO.	11 NOV	17 NOV	01 DEC	AVG. I	AVG. J
7366	280.60 (10)	280.65 (10)	280.54 (10)	280.60	273.84
39239	328.23 (10)	328.31 (10)	328.19 (10)	328.24	331.90
39256	338.51 (10)	338.53 (10)	338.52 (14)	338.52	344.42
39272	350.00 (10)	350.05 (14)	350.03 (12)	350.03	358.45
35299	389.46 (10)	389.58 (10)	389.48 (10)	389.51	406.56
35316	427.51 (10)	427.77 (10)	427.61 (10)	427.63	453.01

Summary of Adjusted Index averages (J) for the 1982 calibration.

.

CYL.NO.	AVG. J	SIGMA	NO.	OF	DAILY	SETS
7366	273.84	0.05		6		
39239	331.91	0.05		6		
39256	344.43	0.01		6		
39272	358.44	0.02		6		
35299	406.56	0.06		6		
35316	453.01	0.16	:	3		
	-					

•

۵

TABLE 2e. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1983 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

		CO2-IN-NITI	ROGEN CYLINDE	RS			
CYL.NO.	12 AUG	16 SEP	23 SEP	28 SEP	06 OCT	AVG. I	AVG. J
2408	200.32 (10)	199.74 (14)	199.65 (10)	199.48.(10)	199.87 (14)	199.81	175.39
3753	251.55 (10)	251.31 (10)	251.19 (10)	251.10 (10)	251.44 (10)	251.32	238.16
7366	280.29 (10)	280.08 (12)	280.05 (10)	280.00 (10)	280.22 (10)	280.13	273.27
6078	310.07 (10)	310.02 (10)	309.99 (10)	309.99 (10)	310.18 (10)	310.05	309.73
2399	320.98 (10)	320.97 (10)	320.97 (10)	320.98 (10)	321.11 (10)	321.00	323.07
39239	328.11 (10)	328.04 (10)	328.05 (14)	328.08 (10)	328.13 (10)	328.08	331.70
39256	338.40 (10)	338.39 (10)	338.44 (10)	338.34 (10)	338.48 (10)	338.41	. 344. 29
39272	349.91 (10)	349.81 (10)	349.81 (10)	349.79 (10)	349.91 (10)	349.85	358.23
1540	364.86 (10)	364.85 (10)	364.83 (10)	364.77 (10)	364.83 (10)	364.83	376.49
35299	389.37' (10)	389.32 (10)	389.37 (10)	389.26 (10)	389.29 (10)	389.32	406.33
35316	427.39 (10)	427.23 (10)	427.26 (14)	427.23 (10)	427.29 (10)	427.28	452.59
AVERAGE:	323.75	323.61	323.60	323.55	323.70		

- 39

Summary of Adjusted Index averages (J) for the 1983 calibration.

CYL.NO.	AVG. J	SIGMA	NO.	OF	DAILY	SETS
2408	175.39	0.39		5		
3753	238.16	0.22		5		
7366	273.27	0.15		5		
6078	309.73	0.10		5		
2399	323.07	0.07		5		
39239	331.70	0.05		5		
39256	344.29	0.06		5		
39272	358.23	0.07		5		
1540	376.49	0.05		5		
35299	406.33	0.06		5		
35316	452.59	0.09		5		

TABLE 2f. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1981 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

CO2-IN-AIR CYLINDERS (WHITE STRIPES)

CYL.NO.	18 AUG	20 AUG	25 AUG	27 AUG	01 SEP	AVG. I	AVG. J
66556	77.20 (10)	77.82 (20)	77.15 (12)	77.55 (10)	76.18 (10)	77.18	25.96
71251	216.61 (10)	217.20 (10)	216.50 (10)	216.91 (10)	216.25 (10)	216.69	195.96
34819	255.14 (10)	255.43 (10)	255.11 (10)	255.23 (10)	254.95 (10)	255.17	242.85
71286	295.47 (10)	295.58 (10)	295.51 (10)	295.52 (10)	295.39 (10)	295.49	291.99
71341	316.90 (10)	316.94 (10)	316,98 (10)	316.97 (10)	316.85 (10)	316.93	318.11
66638	329.65 (10)	329.49 (10)	329.50 (10)	329.60 (10)	329.56 (10)	329.56	333.51
66625	334.58 (12)	334.59 (12)	334.63 (10)	334.54 (10)	334.63 (10)	334. 59	339.64
66696	346.24 (10)	346.31 (10)	346.32 (10)	346.33 (10)	346.30 (10)	346.30	353.91
71308	358.46 (10)	358.56 (12)	358.59 (10)	358.61 (10)	358.54 (12)	358.55	368.83
71370	379.82 (10)	379.90 (10)	379.96 (10)	380.00 (10)	379.93 (10)	379.92	394.87
71479	411.36 (10)	411.63 (10)	411.51 (10)	411.64 (10)	411.33 (10)	411.49	433.35
67615	442.20 (10)	442.66 (10)	442.41 (10)	442.64 (10)	442.26 (10)	442.43	471.05
AVERAGE:	313.64	313.84	313,68	313.80	313.51		
CYL.NO.	31 AUG	03 SEP	28 SEP	10 SEP	14 SEP	AVG. I	AVG. J
71251	216.64 (10)	216.69 (10)	216.28 (10)	216.75 (10)	216.44 (10)	216.56	195.80
71286	295.41 (10)	295.54 (10)	295.41 (10)	295.53 (10)	295.45 (10)	295.47	291.96
66638	329.58 (10)	329.53 (10)	329.54 (10)	329.60 (10)	329.56 (10)	329.56	333.51
71370	379.89 (10)	379.92 (10)	379.84 (10)	379.89 (10)	379.78 (10)	379.86	394.80
67615	442.28 (10)	442.33 (10)	442.17 (10)	442.33 (12)	442.14 (10)	442.25	470.83
AVERAGE:	332.76	332.80	332.65	332.82	332.67		

1 40

Summary of Adjusted Index averages (J) for the 1981 calibration.

CYL.NO.	AVG. J	SIGMA	NO.	OF	DAILY	SETS
66556	25.96	0.76		5		
71251	195.89	0.35		10		
34819	242.85	0.22		5		
71286	291,98	0.07		10		
71341	318.11	0.06		5		
66638	333.51	0.06		10		
66625	339.64	0.05		5		
66696	353.91	0.05		5		
71308	368.83	0.07		5		
7:370	394.84	0.09		10		
71479	433.35	0.18		5		
67615	470 94	0 22		10		

8

٠.

TABLE 2g. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1982 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

CO2-IN-AIR CYLINDERS (NOAA)

CYL.NO.	09 NOV	16 NOV	23 NOV	AVG. I	AVG. J
3082	311.95 (10)	311.94 (10)	311.90 (12)	311.93	312.02
3074	322.27 (12)	322.29 (10)	322.24 (10)	322.27	324.62
3091	332.21 (10)	332.22 (10)	332.19 (10)	332.21	336.74
3071	340.52 (10)	340.56 (10)	340.53 (10)	340.54	346.89
3092	351.31 (10)	351.32 (12)	351.30 (10)	351.31	360.01
AVERAGE:	331.65	331.67	331.63		

CO2-IN-AIR CYLINDERS (BLUE STRIPES)

CYL.NO. 11 NOV		17 NOV	Ø1 DEC	AVG. I	AVG. J	
34891	296.58 (10)	296.54 (10)	296.51 (12)	296.54	293.27	
62807	329.60.(10)	329.62 (14)	329.58 (10)	329.60	333.55	
62817	350.34 (10)	350.39 (12)	350.27 (10)	350.33	358.82	
52814	392.47 (10)	392.64 (10)	392.46 (10)	392.52	410.23	
AVÉRAGE:	342.25	342.30	342.21			

Summary of Adjusted Index averages (J) for the 1982 calibration.

.

CYL.NO. AVG. J SIGMA NO. OF DAILY SETS

34891	293.27	0.05	. 3
3082	312.02	0.04	3
3074	324.62	0.04	3
62807	333.55	0.02	3
3091	336.74	0.02	3
3071	346.89	0.02	3
62817	358.82	0.07	3
3092	360.01	0.01	3
62814	410.23	0.12	3

TABLE 2h. Applied Physics analyzer results in Index units, I, for manometrically analyzed standards during 1983 calibration. The number of comparisons is shown in parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

. .

. . . .

- 42

. . . .

CO2-IN-AIR CYLINDERS

CYL.NO.	12 AUG	16 SEP	23 SEP	28 SEP	06 OCT	AVG. I	AVG. J
71251	215.95 (10)	215.57 (10)	215.42 (10)	215.32 (10)	215.63 (10)	215.58	194.61
34819	254.68 (10)	254.42 (12)	254.33 (10)	254.28 (10)	254.54 (10)	254.45	241.98
71286	295.17 (10)	295.09 (10)	295.04 (10)	295.00 (10)	295.15 (10)	295.09	291.50
71341	316.46 (10)	316.44 (10)	316.41 (10)	316.36 (10)	316.53 (10)	316.44	317.52
66638	329.32 (10)	329.27 (10)	329.28 (10)	329.30 (10)	329.36 (10)	329.31	333.20
66625	334.29 (10)	334.27 (10)	334.28 (10)	334.24 (16)	334.37 (10)	334.29	339.27
66696	346.10 (10)	346.06 (10)	346.04 (10)	346.00 (10)	346.18 (10)	346.08	353.64
71308	358.19 (10)	358.15 (14)	358.11 (10)	358.13 (10)	358.19 (10)	358.15	368.35
71370	379.72 (10)	379.63 (10)	379.62 (10)	379.58 (10)	379.63 (10)	379.64	394.53
71479	411.10 (10)*	410.86 (10)	410.96 (16)	410.90 (10)	411.00 (10)	410.96	432.70
67615	441.93 (10)	441.74 (10)	441.83 (10)	441.70 (10)	441.92 (10)	441.82	470.31
AVERAGE:	334.81	334.68	334.67	334.62	334.77		

Summary of Adjusted Index averages (J) for the 1983 calibration.

CYL.NO.	AVG. J	SIGMA	NO.	OF	DAILY	SETS
71251	194.61	0.29		5		
3481 9	241.98	0.19		5		
71286	291.50	0.09		5		
71341	317.52	0.07		5		
66638	333.20	0.05		5		
66625	339.27	0.06		5		
66696	353.64	0.09		5		
71308	368.35	0.05		5		
71370	394.53	0.06		5		
71479	432.70	0.11		5		
67615	470.31	0.12		5		

TABLE 3. Applied Physics analyzer results in Index units, I, for three-monthly analyzed standards around the 1980 calibration. The number of comparisons is shown is parentheses. Averages, not weighted, are expressed in Index units, I, and Adjusted Index units, J.

· • •

. . .

· · ·

. . . .

. .

.

4 1

+ +

- 43 -

	(X83)						
	Manoretric		Adjusted Inc	lex, J (ppm))		
Cylinder	Concentration	1970	1974	19,80	1983	Drift in	J (ppm)
No.	(ppm)	<u>(J70)</u>	<u>(J74)</u>	<u>(J80)</u>	<u>(J83)</u>	<u>(J80–J74)/6</u>	<u>(J83–J80)/3</u>
^{CO} 2-1	N-NITROGEN CYL	INDERS			•		
2408	196.85		180.83	176.96	175.39	-0.65	-0.52
3753	246.03		241.32	238 . 93	238.16	-0.40	-0.26
7366	276.64	275.88	275.55	273.84	273.27	-0.29	-0.19
6078	310.90	311.49	311.17	310.23	309.73	-0.16	-0.17
2399	324.13	324.56	324.23	323,53	323.07	-0.12	-0.15
39239	332.71		332.82	332.23	331.70	-0.10	-0.18
39256	345.66			344.73	344.29		-0.15
10069	355.68	354.38	354.47	354.36		-0.02	
39272	360.53			358.71	358.23		-0.16
1540	380.48		377.02	377.07	376.49	0.01	-0.19
35299	415.00		406.55	407.19	406.33	0.11	-0.29
35316	472.78		452.55	453.98	452.59	0.24	-0.46

Table 4. Summary of Infrared Analyses during Special Calibration Periods and Inferred System Drift*

* 1970 and 1974 data are as they appear in Table 3 of Bacastow et al. 1983a.

•

Table 5. Coefficients used in computing mole fractions from infrared data

Year	Central Date	Yout	Yin	Name	. <u>c.</u> .	<u> </u>	^C 2 <u>× 10⁴</u>	C ₃ x 10 ⁷	Limit Vali of	ts of dity f J
1960	1 JUL 60	J74–J60' '	J60	LIN3	0.576	-0.005011			285	350
1974	15 AUG 74	XN2	J74	CUB1	77:455	0.573302	3.5735	6.7618	181	453
1980	19 SEP 80	XN2	J80	CUB 2	84.370	0.542223	4.2284	5.8862	177	454
1980	19 SEP 80	XN2	J80	CUB9	84.776	0:537732	4.3849	5.7171	177	454
1983	17 SEP 83	XN2	J83	CUB10	86.946	0.537883	3.8471	6.8562	175	453
1983	17 SEP 83	XAIR	J83	ACUB13	88.579	0.529183	4.4239	6.5448	195	470
1962	1 JUL 62	JC-JB	JB	LIN7	-1.736	0.005661	•		289	348
1966	1 JUL 66	JC-JB	JB	LIN8	3.059	-0.009219			289	348
1970	1 JUL 70	JB-JA	JA	QUAD4	7.036	-0.051734	0.93176		239	354
1972	28 SEP 72	JB-JA	JA	OUAD5	6.566	-0.051026	0.93967		239	354
1978	18 FEB 78	JB-JA	JA	QUAD6	-0.444	0.005385	-0.12695		177	455
1981	7 SEP 81	JB-JA	JA	QUAD11	0.110	-0.003606	0.09029		176	452
1982	18 NOV 82	JB-JA	JA	QUAD12	-4.202	0.021108	-0.26370		274	452

Note: The equations are all of the form

 $Y_{out} = C_0 + C_1 Y_{in} + C_2 (Y_{in})^2 + C_3 (Y_{in})^3$

where Y and Y are listed in the third and fourth columns, respectively. Blank entries indicate zero values for the coefficients. Parameters in columns headed Y and Y are in ppm.

45

1

		(All listed	values are i	n ppm) 2	
			· · · ·		
Cylinder No.	, ; 	JA81		JA83-JA81	Résiduals from fit
1981 Calib	ration				to QUAD11:
2408	176.68	175.63	176.39	-0.24	.01
7366	273.89	273.50	273.25	-0.23	03
39239	332.07	331.76	331.70	-0.06	.02
35316	453.20	452.27	452.59	0.32	01
				Standard error:	.043

Table 6.	Data summary	for 1981 and 1982	corrections for	CO ₂ -in-Nitrogen	standards
		(All listed val	ues are in ppm)	2	

٠.

	<u>J82</u>	JA82	JA83	<u>JA83–JA82</u>		
1982 Calib	ration				to QUAD12:	
7366	273.84	273.68	273.27	-0.41	01	
39239	331.91	331.78	331.70	-0.08	.02	
39256	344.43	344.31	344.29	-0.02	.04	
39272	358.44	358.30	358.23	-0.07	04	
35299	406.56	406.33	406.33	0.00	02	
35316	453.01	452.63	452,59	-0.04	.01	
				Standard error:	.038	

•

Table 7a. Comparison of Manometric and Infrared calibrating data for Scripps CO₂ Project gas standards during the 1981 calibration. Quoted values are in ppm.

. . . .

. •

·. ·

CO2-IN-AIR (WHITE STRIPES)

.

1.1

CYLINDER NO.	J	JA	(JA-J)	JF	(JF-JA)	XN2	XAIR	XAIR-XN2	XMANO	XAIR-XMANO	E.
66556	25.96	23.37	-2.59	23.40	0.03	99.75	101.21	1.46	101.00	0.21	4
71251	195.89	195.01	-0.88	194.76	-0.25	211.37	213.26	1.89	213.16	0.10	7
34819	242.85	242.32	-0.53	242.08	-0.23	249.43	251.89	2.46	251.76	0.13	1
71286	291.98	291.64	-0.34	291.47	-0.17	293.38	296.61	3.22	296.62	-0.01	
71341	318.11	317.81	-0.30	317.68	-0.12	318.63	322.32	3.69	322.34	-0.02	
66638	333.51	333.20	-0.31	333.11	-0.09	334.16	338.13	3.98	338.14	0.01	
66625	339.64	339.33	-0.31	339.25	-0.07	340.47	344.57	4.10	344.56	0.01	
66696	353.91	353.57	-0.34	353.53	-0.04	355.48	359.87	4.39	359.90	-0.03	
71308	368.83	368.45	-0.38	368.45	0.01	371.65	376.35	4.69	376.34	0.01	
71370	394.84	394.34	-0.50	394.43	0.09	401.03	406.29	5.26	406.40	-0.11	
71479	433.35	432.59	-0.76	432.83	0.24	447.43	453.57	6.14	453.38	0.19	
67615	470.94	469.83	-1.11	470.24	0.41	496.25	503.30	7.05	503.41	-0.11	

. . .

1.1

. . .

••••

I

v

· · · ·

CO2-IN-AIR (BLUE STRIPES	AND NOAA	CYLINDERS)							
CYLINDER NO.	L	JA	(JA-J)	JF	(JF-JA)	XN2	XAIR	XAIR-XN2	XMANO	XAIR-XMANO
34891	293.27	293.13	-0.14	292.85	-0.28	294.68	297.93	3.24	297.92	0.01
3082	312.02	311.90	-0.12	311.71	-0.18	312.76	316.33	3.58	316.32	0.01
3074	324.62	324.50	-0.12	324.37	-0.13	325,29	329.10	3.81	329.08	0.02
62807	333.55	333.42	-0.13	333.33	-0.10	334.37	338.36	3.98	338.36	0.00
3091	336.74	336.61	-0.13	336.53	-0.08	337.66	341.70	4.05	341.62	0.08
3071	346.89	346.76	-0.13	346.70	-0.05	348.25	352.50	4.25	352.40	0.10
62817	358.82	358.68	-0.14	358.65	-0.02	360.97	365.47	4.49	365.35	. 0.12
3092	360.01	359.86	-0.15	359.84	-0.02	362.26	366.78	4.51	366.63	0.15
62814	410.23	409.99	-0.24	410.01	0.02	419.41	425.02	5.61	424.92	0.10

- 48 -

·

Table 7c. Comparison of Manometric and Infrared calibrating data for Scripps CC₂ Project gas standards during the 1983 calibration. Quoted values are in ppm.

. . . .

. .. '

. •

CO2-IN-AIR (WHITE STRIPES)

· · ·

· ·

CYLINDER NO.	J	JA	(JA-J)	JF	(JF-JA)	XN2	XAIR	XAIR-XN2	XMANO	XAIR-XMAND	
71251	194.61	194.61	0.00	194.61	. 0. 00	211.25	213.14	1.89	213.16	-0.02	- 5
34819	241.98	241.98	0.00	241.98	0.00	249.34	251.80	2.46	251.76	0.04	1
71286	291.50	291.50	0.00	291.50	0.00	293.41	296.63	3.22	296.62	0.01	
71341	317.52	317.52	0.00	317.52	0.00	318.47	322.15	3.68	322.34	-0.19	
66638	333.20	333, 20	0.00	333.20	0.00	334.24	338.22	3.98	338.14	0.08	
66625	339.27	339.27	0.00	339.27	0.00	340.49	344.59	4.10	344.56	0.03	
666 96	353.64	353.64	0.00	353.64	0.00	355.60	359.98	4.39	359.90	0.08	
71308	368.35	368.35	0.00	368.35	0.00	371.54	376.23	4.69	376.34	-0.11	
71370	394.53	394.53	0.00	394.53	0.00	401.14	406.40	5.26	406.40	0.00	,
71479	432.70	432.70	0.00	432.70	0.00	447.26	453.40	6.14	453.38	0.02	
67615	470.31	470.31	0.00	470.31	0.00	496.34	503.39	7.05	503.41	-0.02	

1

.

49

Table 8. Annual averages of XAIR-XMANO (in ppm) of gas mixtures containing oxygen

	co	2-IN-AII	R	C02-1	$[N-N_2 + 0]$	D ₂				HIGH 02	MIXTURES			
Cy1. No: %0 ₂ :	35405 20.9	34770 20.9	35401 20.9	35452 18.8	35434 18.8	35389 20.9	Av.	Av. Departure	35442 58.0	35441 41.0	35442 Reduced from	35441 Departures Average [†]	Av. Departure	
1973	-0.04	-0.01	0.27	0.65	0.72	-0.18	0.24	0.05	-7.07	-3.31	0.02	0.05	0.04	
1974	-0.23	-0.04	0.02	0.59	0.56	-0.16	0.12	-0.07	-7.34	-3.58	-0.08	-0.09	-0.08	
1975	-0.01	-0.01	0.17	0.61	0.58	-0.10	0.21	0.02	-7.19	-3.52	-0.03	-0.06	-0.04	
1976	-0.18	-0.07	-0.10	0.59	0.51	-0.07	0.11	-0.08	-7.27	-3.51	-0.05	-0.06	0.06	
1977	-0.19	-0.03	-0.04	0.62	0.61	0.04	0.17	-0.02	-7.19	-3.41	-0.03	-0.01	-0.02	1
1978	-0.08*	0.03	-0.11	0.62	0.67	0.05	0.20	0.01	-7.07	-3.42	0.02	-0.01	0.00	50
1979	-0.03	0.03	-0.01	0.70	0.69	0.12	0.25	0.06	-7.00	-3.26	0.04	0.07	0.06	1
1980	-0.07	0.02	0.02	0.66	0.62	0.02	0.21	0.02	-7:07	-3.35	0.02	0.03	0.02	
1981	-0.06	0.04	-0.01	0.61*	0.79	-0.06*	0.22	0.03	-6.86	-3.23	0.09	0.09	0.09	
1982	-0.11	0.00	-0.01	0.59	0.60	0.03	0.18	-0.01	-7.02	-3.32	0.04	0.04	0.04	
1983	-0.05	0.01	0.06	0.59	0.61	0.10	0.22	0.03	-6.97	-3.26	0.05	0.07	0.06	
Wt. Av.	-0.08	-0.01	0.05	0.61	0.61	-0.06	0.19	0.00	-7.12	-3.40			0.00	

[†] Departures from Average divided by percent 0₂ times 20.9.

* No data. Wt'd. Av. substituted.

Table 9. Date used to verify correction for change in the source block optical path (adjusted index values, JF and ΔJF in ppm, standard deviations shown in parentheses).

							ΔJ After-		0.	∆JF corrected
Cylinder No.	Incl Bef	usive Date ore	es (yr/	mo/day) After *	Averag Before	After	minus before	$\Delta J + 0.11$	ratio	for 02 variation
<u>CO2-IN-AIR</u>	CYLINDER	S	. 1							
35405	800410	-801028	8011	17-810929	. 331.94	331.94	0.00	0.11		0.11
					(.014)	(.007).	(.016)			(.016)
34770	**	11		Ħ	333.47	. 333,47	0.00	0.11		0.11
					(.021)	(.012)	(.024)			(.024)
35401	800417	- "		11	347.03	346.99	-0.04	0.07		0.07
					(.022)	(.052)	(.056)			(.056)
<u>co2-IN-N2+0</u>	CYLINDE	RS								
35452	790221	-801029	8011	10-801114	319.78	319.78	0.00	0.11		0.11
					(.015)	(.026)	(.030)			(.030)
35434	11	-800819		-810206	319.83	. 319.90	-0.07	0.18		0.18
					(.066)	(.030)	(.072)			(.072)
35389	11	**		-801114	330.55	330.56	0.01	0.12		0.12
					(.075)	(.015)	(.076)			(.076)
35442	11	-801029	п	-800206	315.21	315.35	0.14	0.25	20.9/	0.09
					(.050)	(.031)	(.059)		58.0	(.021)
35441	11		**	11	323.92	323.94	0.02	0.13	20.9/	0.07
					(.046)	(.025)	(.052)		41.0	(.027)
							Unweighted a	verage:		0,108
							Average weig	hted by o	-2:	0.101
							Weighted ave	rage conc	entration:	327
* Data for	r 810204	and 81020.	5 omitt	ed, because	analyses		Correction fa	actor:		0.00031

were at reduced pressure.

- 51 -

		4.1			•		Adjusted			
Cylinder		Index	No. of	No. of	Inter	rval	Index			
No.	Interval	(in ppm)	Det'ns	Run Days	Date.	Date	(in ppm)	Remarks		
2401	Before	308.48	135	14	10/14/69	11/14/74		Refgas Subcum Av.		
	After	308.21	32	3	4/ 8/75	4/22/75		11 11 11		
	Wt. Av.	308.43	167	17			307.76	Not in Refgas		
39232	Before	314.87	161	14	12/21/72	11/14/74		Refgas Cum. Av.		
	After	314.71	32	3	4/10/75	4/22/75		" Subcum. Av.		
	Wt. Av.	314.84	193	17	2		315.57	Not in Refgas		
3756	Before	321.39	168	17	1/ 9/75	3/15/75		Refgas Cum. Av.		
	After	321.45	83	8	4/ 7/75	4/24/75		11 11 11 II		
	Wt. Av.	321.41	251	25			323.57	Not in Refgas		
4287	Before	328.61	139	14	4/20/73	11/15/74		Refgas Cum. Av. I		
	After	328.67	29	3	4/ 8/75	4/23/75		" Subcum. Av.		
	Wt. Av.	328.62	168	17			332.36	Not in Refgas.		
10077	Before	341.83	115	11	9/27/73	3/13/75		Refgas Cum. Av.		
	After	341.98	20	2	4/14/75	4/18/75		" Subcum. Av.		
	Wt. Av.	341.85	135	13			348.48	Not in Refgas		
34816	Before	307.52	92	. 9	6/26/74	3/12/75		Refgas Cum. Av.		
	After	307.50	20	2	4/ 8/75	4/16/75		ED 01 DT		
	Wt. Av.	307.52	112	11			306.65	Not in Refgas		
39382	Before	319.62	40	4	1/ 8/75	2/20/75		Refgas Cum. Av.		
	After	319.58	22	2	4/10/75	4/16/75		11 11 11		
	Wt. Av.	319.60	62	. 6			321.37	Not in Refgas		
35260	Before	321.74	52	5	11/27/74	3/13/75		Refgas Cum. Av.		
	After	321.82	24	2	4/10/75	4/11/75		87 88 87		
	Wt. Av.	321.76	76	7			324.00	Not in Refgas		
35380	Before	325.20	62	6	4/18/74	3/12/75		Refgas Cum. Av.		
	After	325.31	20	2	4/ 8/75	4/16/75		n n <u>n</u>		
	Wt. Av.	325.23	82	8			328.23	Not in Refgas		
35405	Before	329.05	107	10	10/11/73	3/12/75		Refgas Cum. Av.		
	After	329.11	21	2	4/8/75	4/16/75		88 88 88		
	Wt. Av.	329.06	128	12			332.90	Not in Refgas		

Table 10. Applied Physics Analyzer results to obtain adjusted index data of Table 11.

. . .

(All Data are obtained from Reference Gas Report No. 27.)

Table 10. (cont.)

.

.

Cylinder		Index	No. of	No. of	Inter	val	Adjusted Index	
No.	Interval	(in ppm)	Det'ns	Run Days	Date	Date	(in ppm)	Remarks
35401	Before	341.27	212	21	. 10/11/73	3/12/75		Refgas Cum. Av.
	After	341.36	20	2	4/ 8/75	4/16/75		H H H
	Wt. Av.	341.28	232	23			347.79	Not in Refgas
35442	Before	315.54	137	13	4/20/73	3/13/75		Refgas Cum. Av.
	After	315,38	21	2	4/ 9/75	4/17/75		11 11 11
	Wt. Av.	315.52	158	15			316.40	Not in Refgas
35441	Before	322.56	141	13	4/20/73	3/13/75		Refgas Cum. Av.
	After	322.32	26	2	4/ 9/75	4/17/75		11 11 11
	Wt. Av.	322.52	167	15			324.93	<u>Not</u> in Refgas

- 53 -

		Atmosph	eric Pressure*				
		1 1	Measured Infrared	700 mb or 511	mm Hg**	350 mb or 256	mm Hg***
Cylinder		No. of	Adjusted Index (J)	No. of	ΔJ	No. of	ΔJ
<u>No.</u>	Gas Type	Comparisons	(ppm)	Comparisons	<u>(ppm)</u>	Comparisons	<u>(ppm)</u>
2401	CO_2 in N_2	167	307.76	66	14	21	+.05
39232		193	315.57	10	08	11	14
3756	11	251	323.57	94	+.41	12	+.31
4287	н	168	332.36	45	+.28		
10077	11	135	348.48	40	+.14		
				Av of 8 CO_2 in N	2 = +.10	$\sigma_i = .22$	
34816	Compressed Air	112	306.65	44	42		
39382	11	62	321.37	10	33	10	53
35260	11	76	324.00	10	32	10	58
35380	11	82	328.23	56	50		
35405	11	128	332.90	46	48		
35401	11	232	347.79	46	26		
				Av of	6 =38	$\sigma_i = .10$	
	CO_2 in						
35442	$60\% 0\bar{2}, 40\% N_2$	158	316.40	40	-1.10	20	-2.05
35441	$40\% 0_2^{\text{CO}_2 \text{ in}}$	167	324.93	30	80	20	-1.61

Table 11. Data obtained in 1974 to determine the pressure correction to the computation of CO_2 concentrations in air when CO_2 -in-N₂ standards are used with the Scripps Applied Physics Analyzer.

. . . .

,

- 54 -

* Measured before and after reduced pressure calibrations (see Table 10)

** Measured on 3/26/65, 3/27/75, 3/28/75, 3/31/75 and 4/2/75

******* Measured on 4/4/75

Table 12. Comparison of XAIR computed in 1982 and 1983, (1983 minus 1982) in hundredth of a ppm.

1.11

.....

.

 $\mathbf{r} \rightarrow \mathbf{r}$

							• •																					
YEAR	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	
170	28	28	28	28	28	28	28	28	27	27	27	27	28	28	28	28	28	28	28	27	27	27	27	27	26	16	112	
180	26	26	26	26	26	26	26	26	26	26	26	26	26	26	. 26	26	26	26	26	26	25	25	25	25	24	16	106	
190	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	. 24	24	24	24	24	24	24	23	23	22	15	100	
200	22	22	22	22	22	22	22	22	22	22	22	22	22	.55	22	22	22	22	22	22	22	22	22	21	20	15	93	
210	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	. 20	20	20	20	20	20	20	20	20	18	14	86	
220	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	16	13	80	
230	17	17	17	17	17	17	17	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	14	12	73	
240	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	14	14	14	14	14	12	11	67	
250	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	12	12	10	10	60	
260	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	. 8	9	54	
270	10	10	10	10	10	10	10	10	9	9	. 9	9	9	9	10	10	9	9	9	9	9	9	9	9	6	8	49	
280	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	5	7	43	
290	7	7	7	. 2	7	7	7	7	7	7	7	7	7	7	7	7	7	7	6	6	6	6	6	6	3	6	38	
300	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	2	5	34	
310	4	4	4	4	4.	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Ø	4	30	
320	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-1	3	26	
330	3	3	3	3	3	3	3	3	3	. 3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	-2	3	23	
340	2	2	2	2	2	2	2	2	2	2	2	.2	2	2	2	2	2	2	2	2	2	2	2	2	-2	2	21	
350	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-3	2	19	
360	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-2	2	19	
370	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-2	3	19	
360	3	3	3	3	3	3	3	3	3	3	3	3	. 3	3	3	3	3	3	3	3	3	3	3	3	-1	3	20	
390	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	0	4	22	
400	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	1	5	25	
410	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	4	7	29	
420	10	10	10	10	10	11	11	10	10	10	11	11	11	11	11	11	11	11	11	10	10	10	10	10	6	8	34	
430	13	13	13	13	14	14	14	14	14	14	14	14	14	141	4 1	4 :	14 1	14 1	4 1	4 1	4 1	3 1	13 1	.3	9 1	1 .	40	
440	17	17	17	17	17	17	17	17	17	17	18	18	18	18	8 1	8	18 1	18 1	17 :	17 1	7 1	7 1	17 1	17 1	3 1	3	48	
450	21	21	21	21	21	22	22	22	22	22	22	22	22	232	3 8	23 2	22 2	22 2	22 2	21 2	21 2	21 2	21 2	21 1	7 1	6	57	

1 55 -

Table 13. Comparison of "XN2" computed in 1982 and 1983, (1983 minus 1982) in hundredth of a ppm.

•

.

 \mathbf{r}^{-1}

YEAR 68 69 J .1. Ø -9 .1 -9 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø ø -1 -8 Ø Ø Ø Ø Ø Ø Ø Ø ø Ø Ø Ø -7 -1Ø ø Ø Ø Ø Ø ø Ø Ø Ø Ø -2 -6 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø -2 -5 Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø -2 -4 δ Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø -2 Ø -4 ł. Ø Ø Ø Ø ø Ø Ø Ø Ø Ø Ø -3 -3 ø Ø Ø Ø Ø Ø -2 -2 Ø Ø Ø Ø Ø Ø Ø Ø Ø ø Ø Ø Ø -3 -1 Ø Ø Ø -3 -1 -2 -2 -2 -2 -2 -2 21 -З З З -2 З З З З З З З З -1 З З З З -1 З З З З -1 З З -1 З З З -1 -1З З З -2 З S З -2 Ø -2 -2 -3 -4

. . . .

. • • . .

• • • •

L S

-7

C*****	******	***********	*****
С			
С			
C C	SUB	ROUTINES TO	COMPUTE MOLE FRACTION FOR CO2-IN-N2 AND
С	CO2	-IN-AIR BASE	D ON THE 1983 CALIBRATION.
С		A SINGLE CA	LL TO CALDAY IS NECESSARY BEFORE CALLING
С	CAL	83. CAL83 C	AN THEN BE CALLED AS MANY TIMES AS DESIRED.
C	IN	PUTS TO CALS	3 ARE:
C		ID: DATE (ARRAY OF 3 2-DIGIT INTEGERS)
С		GAS: GAS T	YPE (CHARACTER) "A" DR "N"
C		Y57: "J" V	ALUE (REAL)
C		TPUTS OF CAL	83:
C		DAYN: DAY	NUMBER (REAL) DAYS SINCE 1 JAN. 1955.
C		FJ: DRIFT	CURRECTED "J" VALUE (REAL)
C		X: MULE FR	ACTIUN VALUE (REAL)
C			
C			
C			
	. TABLE	DF VARIABLES	ARRATS, AND FUNCTIONS:
		NATA TYPE)	DESCRIPTION IN 1992 CALIBRATION REPORT
č		VALA LIFE/	DESCRIPTION IN 1965 CALIBRATION REPORT
č	ACURES		"ACUR13"
č	100000	FUNCTION)	
č	A .J	(REAL)	"JA"="J" AFTER FIRST LEVEL DRIFT CORRECTION
č	BJ	(REAL)	"JB"="J" AFTER SECOND LEVEL DRIFT CORRECTION.
č	CDuu	(REAL)	CENTRAL DATE FOR CALIBRATION OR CORRECTION
Ċ			OF YEAR 1900 EXPRESSED AS NUMBER OF DAYS SINCE
c	-		1/1/55.
č	CDSB	(REAL)	END DATE FOR SOURCE BLOCK CORRECTION, EXPRESSED AS
Č ·		,	THE NUMBER OF DAYS SINCE 1/1/55.
C	CDSBO	(REAL)	START DATE FOR SOURCE BLOCK CORRECTION, EXPRESSED
С			AS THE NUMBER OF DAYS SINCE 1/1/55.
С	CJ	(REAL)	"JC"="J" AFTER THIRD LEVEL DRIFT CORRECTION.
C .	CUB40	(REAL	"CUB1(J+LIN3(J))".
С		FUNCTION)	
С	CUB74	(REAL	"CUB1".
С		FUNCTION)	
С	CUBBO	(REAL	"CUB2".
С		FUNCTION)	
С	CUB83	(REAL	"CUB10".
С		FUNCTION)	
С	CUB83I	(REAL	INVERSE OF "CUB10".
C		FUNCT-ION)	
C	CUB G 80	(REAL	"CUB9".
C		FUNCTION)	
C	C08801	(REAL	INVERSE OF "CUB9".
C		FUNCTION)	
C	DJ.	(REAL)	"DELTA J".
	DJUU	(REAL)	IN GENERAL: DJYY=QOADYY(AJ) UR DJYY=SILNYY(BJ). HDCLTA KAN
	DJGZ	(REAL)	UDELTA JOZ".
	DJ66	(REAL)	"DELTA JOO".
		(REAL)	DELIA 070".
		(REAL)	UDELTA IZON
č		ARCHLI ARCHLI	UELIM 0/0 . "Dei TA 101"
č	D 100	VREAL /	UNCLIM VOI".
č	DAAN	(DEAL)	NELLA VOZ . NATE NE ANALVETE, EVEREGER AG NUMBER OF RAVO
č	UNTIN	(REAL)	SINCE 1/1/55
č	E.I		SINCE ITTTO. U.E.S. U.E.U.IV DDIET COPPECTED
u	r V	VICENC/	VF - V FVELT DRIFT GURREGIED.

9

				- 58 -
C	CA	s (CHARACTER)	INDICATES GAS TYPE: "A"=CO2-IN-AIR. "N"=CO2-IN-N2
č		u ((INTEGER	DATE OF ANALYSIS, EXPRESSED AS VV.MM. DD
č	10		APPAVI	DATE OF ARRESTS, CARACODED AS TITANDD.
č	QU	4070	(PFAL	"011404"
č	90		FUNCTION	
2		4077	(PEAL	"QUADS"
5	90		FUNCTION	
2	011	4070	(DEAL	"OLIADA"
2	90		FUNCTION	GOADS .
5	QU		(DEAL	"QUADIT" (OF 1983 REPORT ONLY)
2	40	-101	FUNCTION	GOADII (OF 1705 NEFORT DIALTY.
č	011		(PEAL	"011010"
č	40		FUNCTION)	
č	ST	NA2	(REAL	"I TN7"
č			FUNCTION	
č	ST	NAA	(REAL	"I TNB"
č			FUNCTION)	
č	X		(REAL)	MOLE FRACTION VALUE RETURNED BY ROUTINE
č	Xu	u	(REAL)	IN GENERAL: $Xuu = CUBuu (Y59)$
c	XA	õ	(REAL)	"X3"
č	X7	4	(REAL)	"X1"
č	XB	0	(REAL)	"X9"
c	XB	3	(REAL)	"X10".
č	XA	IR	(REAL)	MOLE FRACTION VALUE FOR A CO2-IN-AIR GAS.
c	XN	2	(REAL)	MOLE FRACTION VALUE FOR A CO2-IN-N2 GAS.
C	XX		(REAL)	"XINTERP".
C	XX	X	(REAL) :	"XSHIFT".
С	Y5	7	(REAL)	n () n ()
C				
	SU	BROU	TINE CAL83(I	D, GAS, Y59, DAYN, FJ, X)
	CO	MON	/CAL/CD60, CD	62, CD66, CD70, CD72, CD74, CD78, CD80, CD81, CD82, CD83,
	& :		- DAY74, C	DSB 1
	DI	1ENS	ION'ID(3)	
	CH	ARAC	TER*1 GAS, AI	R, GN2
	DA	TA A	IR, GN2/'A', '	N'/
С				
	DA	N=D	AYNO(ID(1), I	D(2), ID(3))
	CAI	L CI	ORR1(DAYN, Y5	9, AJ)
	CAL	LC	ORR2(DAYN, AJ	, BJ)
	CAI		ORR3(DAYN, BJ	, CJ)
	CAI	L CI	DRR4 (DAYN, CJ	, XN2, FJ)
	IF	(GA	5. EQ. (A') TH	
		CALI	L CURRSIDAYN	(FJ, XAIR)
		X=X	AIR	
	EL:		-	
		X=XI	N2	4 Ar
•	ENI			
	RE	URN		
~	ENI	,		
C.				
~	CLIT	10011	TINE CALDAY	
	00	MON	INE CHEDAT	42. CD44. CD70. CD72. CD74. CD79. CD90. CD91. CD92. CD92
	8.			ner
	CD	-0=D	AVND(40.7.1)	
	CD	2=0	AVNA(42.7.1)	
	CD	64=D	AVNO (44. 7. 1)	
	CD	70=D	AVNO (70. 7. 1)	
	CD	72=D	AYND (72. 9. 29)
	CD	74=D	AYND (74, 8, 15	
	CD	78=D	AYNO (78, 2, 18	

С

c. c

CD80=DAYNO(80, 9, 19) CD81=DAYN0(81,9,7) CD82=DAYNO(82,11,18) CD83=DAYNO(83,09,17) CDSB=DAYNO(80, 10, 30) C.... THIS STATEMENT NOT REFERENCED DAY74=DAYNO(74,7,1) С RETURN END С С FUNCTION DAYNO (MYEAR, MONTH, MDAY) THIS SUBROUTINE CALCULATES THE NO. OF DAYS FROM JAN 1, 1955 Ĉ DIMENSION MONTHR(12), IDATE(3) DATA MONTHR/31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 30, 31/ C NDAYS=0 LYEAR=MYEAR-1 IF(LYEAR. LT. 55)G0 TO 102 DO 101 I=55, LYEAR NDAYS=NDAYS+365 J=MOD(I, 4)IF(J.EQ.O) NDAYS=NDAYS+1 101 CONTINUE 102 CONTINUE IF (MONTH. EQ. 1) GO TO 105 LMONTH=MONTH-1 . J=MOD(MYEAR, 4) DO 103 I=1, LMONTH NDAYS=NDAYS+MONTHR(I) IF (-I. EQ. 2. AND. J. EQ. 0) NDAYS=NDAYS+1 103 CONTINUE 105 NDAYS=NDAYS+MDAY DAYNO=NDAYS RETURN END С C SUBROUTINE CORR1(DAYN, Y59, AJ) COMMON/CAL/CD60, CD62, CD66, CD70, CD72, CD74, CD78, CD80, CD81, CD82, CD83, DAY74, CDSB & С C.... THIS PROCEDURE EXTRAPOLATES PRIOR TO CD60. IF (DAYN. GT. CD74)GO TO 20 X60=CUB60(Y59) X74=CUB74(Y59) XX=(X74*(DAYN-CD60)+X60*(CD74-DAYN))/(CD74-CD60) AJ=CUBBOI(XX) GO TO 50 с. 20 CONTINUE IF (DAYN. GT. CD80) GD TO 30 X74=CUB74(Y59) X80=CUB80(Y59) XX=(X80*(DAYN-CD74)+X74*(CD80-DAYN))/(CD80-CD74) AJ=CUB80I(XX) GO TO 50 С 30 CONTINUE IF (DAYN. GT. CD83) GO TO 40 X80=CUBQ80(Y59)

	- 60 -
	Y03=CUR83(V59)
3	$X = (X = (X = 2 \times (D = X) + X = 0 \times (CD = 3 - D = X = 0)) / (CD = 3 - CD = 0)$
•	
10	CONTINUE
40	
	AJEYJY
50	CUNTINUE
	RETURN
	END
	FUNCTION CUB60(A60)
	DJ=0. 576-0. 005011*A60
	A74 = A60 + DJ
	CUB60=CUB74(A74)
	RETURN
	END
	FUNCTION CUB74(A74)
	CUB74=77. 455+A74*(0. 573302+A74*(3. 5735E-4+6. 7618E-7*A74))
	RETURN
	END
	FUNCTION CUBM74(YJ)
	THIS FUNCTION IS NOT REFERENCED IN THIS PROGRAM.
	CUBM74=76. 582+YJ*(0. 584910+YJ*(3. 1151E-4+7. 3225E-7*YJ))
	RETURN
	END
	FUNCTION CUBBO(ABO)
	CUB90=94,370+480+(0,542223+480+(4,2284E-4+5,8862E-7+480))
	DETIIDN
	FUNCTION CUROBO(ARO)
	TUTO ETT INCLUDED QUARTERLY RUNG ON THE NEU NO MANOG AROUND 1990
	THIS FIT INCLUDES QUARTERLY RUNS ON THE NEW NZ MANUS AROUND 1980
	CUBUBU=84. //8+ABU*(0. 33//32+ABU*(4. 3847E=4+3. /1/1E=/*ABU))
	RETURN
	END
•	FUNCTION CUBBOI(X)
	AJ=X
8	DO 10 I=1,100
	XX=CUB80(AJ)
	IF(ABS(XX-X).LT001) GD TD 20
	AJ=AJ-XX+X
10	CONTINUE
	WRITE(6, 101)X
101	FORMAT(' INVERSE OF 1980 CUBIC DID NOT CONVERGE, X = ', E14.6)
20	CUB80I=AJ
	RETURN
	END

```
- 61 -
     CUB83=86.946+A83*(0.537883+A83*(3.8471E-4+6.8562E-7*A83))
2
      RETURN
      END
C
C
      FUNCTION CUBBBI(X)
      AJ=X
      DO 10 I=1,100
      XX=CUB83(AJ)
      IF (ABS(XX-X), LT., 001) GD TD 20
      AJ=AJ-XX+X
   10 CONTINUE
      WRITE(6, 101)X
  101 FORMAT(' INVERSE OF 1983 CUBIC DID NOT CONVERGE, X = ', E14. 6)
   20 CUB83I=AJ
      RETURN
      END
C
      SUBROUTINE CORR2(DAYN, AJ, BJ)
      COMMON/CAL/CD60, CD62, CD66, CD70, CD72, CD74, CD78, CD80, CD81, CD82, CD83,
     &
                  DAY74, CDSB
      QUAD70(AJ) = 7.036 + AJ*(-0.051734 + 0.93176E-4*AJ)
      GUAD72(AJ) = 6.566 + AJ*(-0.051026 + 0.93967E-4*AJ)
      QUAD78(AJ) = -0.444 + AJ*(0.005385 - 0.12695E-4*AJ)
      GUAD81(AJ) = 0.110 + AJ*(-0.003606 + 0.09029E-4*AJ)
      QUAD82(AJ) = -4.202 + AJ*(0.021108 - 0.26370E-4*AJ)
С
      DJ=0.
C
      IF (DAYN. GT. CD70)GD TO 10
      IF (DAYN. LT. CD60) GO TO 80
      DJ70=QUAD70(AJ)
      DJ=(DAYN-CD60)/(CD70-CD60)*DJ70
      GO TO 80
C
   10 IF (DAYN. GT. CD72) GO. TO 20
      DJ70=QUAD70(AJ)
      DJ72=QUAD72(AJ)
      DJ=(DJ72*(DAYN-CD70)+DJ70*(CD72-DAYN))/(CD72-CD70)
      GO TO 80
C
   20 IF (DAYN. GT. CD74) GO TO 30
      DJ72=QUAD72(AJ)
      DJ=(CD74-DAYN)/(CD74-CD72)*DJ72
      GO TO 80
                . . .
С
 . 30 IF (DAYN. GT. CD78) GO TO 40
      DJ78=QUAD78(AJ)
      DJ=(DAYN-CD74)/(CD78-CD74)*DJ78
      GO TO 80
С
   40 CONTINUE
      IF (DAYN. GT. CD80) GO TO 50
      DJ78=QUAD78(AJ)
      DJ=(CD80-DAYN)/(CD80-CD78)*DJ78
      GO TO 80
C
   50 CONTINUE
      IF (DAYN. GT. CD81) GO TO 60
      DJ81=QUAD81(AJ)
      DJ=DJ81*(DAYN-CD80)/(CD81-CD80)
```

```
- 62 -
     . GO TO 80
* C
    60 CONTINUE
       IF (DAYN. GT. CD82) GO TO 70
       DJ81=QUAD81(AJ)
       DJ82=QUAD82(AJ)
       DJ=(DJ82*(DAYN-CD81)+DJ81*(CD82-DAYN))/(CD82-CD81)
       GO TO 80
 С
    70 CONTINUE
       IF (DAYN. GT. CD83) GO TO 80
       DJ82=QUAD82(AJ)
       DJ=DJ82*(CD83-DAYN)/(CD83-CD82)
 C
    80 BJ=AJ+DJ
       RETURN
       END
 C
 С
       SUBROUTINE CORR3(DAYN, BJ, CJ)
       COMMON/CAL/CD60, CD62, CD66, CD70, CD72, CD74, CD78, CD80, CD81, CD82, CD83,
                   DAY74, CDSB
      8.
       STLN62(BJ) = -1.736 + 0.005661*BJ
       STLN66(BJ) = 3.059 - 0.009219*BJ
 C
       DJ=0.
 C
       IF (DAYN. GT. CD62)GO TO 10
       IF (DAYN. LT. CD60)GO TO 50
       DJ62=STLN62(BJ)
       DJ=(DAYN-CD60)/(CD62-CD60)*DJ62
       GO TO 50
 C
    10 IF (DAYN. GT. CD66) GO TO 20
       DJ62=STLN62(BJ)
       DJ66=STLN66(BJ)
       DJ=(DJ66*(DAYN-CD62)+DJ62*(CD66-DAYN))/(CD66-CD62)
       GO TO 50
 C
    20 CONTINUE
       IF (DAYN. GT. CD70)GD TO 50
       DJ66=STLN66(BJ)
       DJ=(CD70-DAYN)/(CD70-CD66)*DJ66
 С
    50 CJ=BJ+DJ
       RETURN
       END
 C°
 CE
       SUBROUTINE CORR4(DAYN, CJ, XN2, FJ)
  8
       COMMON/CAL/CD60, CD62, CD66, CD70, CD72, CD74, CD78, CD80, CD81, CD82, CD83,
      8
                   DAY74, CDSB
 С
       IF (DAYN. GT. CD80) GO TO 10
       XXX=CUBQ8O(CJ)
       XN2=XXX
       FJ=CUB83I(XXX)
       GD TD 20
 C
    10 FJ=CJ
       XN2=CUB83(FJ)
```

	- 63 -
C	•
	20 CONTINUE
	RETURN
	END
С	· •
c	•
Ξ.	SUBROUTINE CORR5(DAYN, FJ, XAIR)
	COMMON/CAL/CD40, CD42, CD44, CD70, CD72, CD74, CD78, CD80, CD81, CD82, CD83,
	& DAY74. CDSB
C	
č	ASCARITE TRAP CLEANED ON COSBO, CONTAMINATED AND NOT CLEANED
C.	ACATN UNTIL COSR
č	
C	CDSB0=DAVND(72.04.19)
	IE ((DAVN LT CDSB) AND (DAVN GE CDSBO))
	&F.J=F.J+0_00033+F.J
	XATR=ACUB83(E.I)
C	
~	RETURN
	END
C	
č	
•	FUNCTION ACURB3(CB3)
	ACUBB3=88.574 + C83*(0.529183+C83*(4.42387E-4+6.5448E-7*C83))
	RETURN
	END
C	
C	END OF X83 SUBROUTINES
c	and the and the second and the second and the second sec
C#-	****
0.0	

Figure 1. System drift in CO_2 -in- N_2 gas standards between 1980 and 1983 calibration periods based on the change in adjusted index of 11 standards (see final column of Table 4). The smooth curve is a plot of the difference between cubic equations, CUB9 and CUB10, fit separately to the data for 1980 and 1983, respectively. The actual differences are divided by three to establish the annual drift rate.

- 64 -

Figure 2. - Second level correction for the special calibration period of 1981. The circles indicate data from Table 6. The smooth curve represents QUAD11, a quadratic fit of the differences, JA83-JA81. The data on both axes are expressed in ppm.

*

82

Figure 3. Second level correction for the special calibration period of The circles indicate data from Table 6. 1982. The smooth curve represents QUAD12, a quadratic fit to the differences, JA83-JA82. The data on both axes are expressed in ppm.

A

1

\$