VOLUMETRIC REPORT I

J. Alexander Adams Carbon Dioxide Project Scripps Institution of Oceanography La Jolla, California 92093

August 27, 1975

- Revised March 18, 1977

I. Introduction

During 1974 an independent check was made on the manometricacalibration of the non-dispersive infrared (IR) analyzer (Applied Physics Corporation (APC) Model No.-55) located in 2317 Ritter Hall, used in this project for CO_{2} analysis (reported in Manometer Report III, Guenther, 1976 a). Precise synthetic mixtures of CO_{2} in $\mathrm{N}_{2}, \mathrm{O}_{2}$, and Ar were prepared and analyzed versus reference gases used in the manometric studies.

This study was suggested in 1972 when, in the course of testat Scripps two UNOR analyzers made by Maihak Corporation, Hamburg, Germany, and an URAS 1 made by Hartmann and Braun Corporation, Frankfurt, Germany, it was found that when mixtures of CO_{2} in N_{2} used as reference gases were compared with air, infrared index values deduced for air with the UNORs were distinctly higher than those obtained from an APC analyzer run in parallel. The difference was approximately 4 ppm for one of the UNORs and 6 ppm for the other: A close check on the performance of an URAS analyzer also being tested at the same time showed a difference on the order of 0.3 ppm from the same APC analyzer, the URAS giving, however, a lower index value than the APC. These differences are probably a result of a differential pressure broadening effect on the CO_{2} IR absorption band when the reference gas contains a carrier gas different: from the air being analyzed. To establish this pressure broaden-. ing effect accurately for several carrier gases, the present study was undertaken.

In the experiments now to be described, seven pyrex glass flasks of approximately five liter capacity, and seven pyrex glass plenums with volumes between 1.3 and 2.3 cc , were employed to prepare synthetic mixtures of CO_{2} in nitrogen, oxygen, and argon. The flask volumes were calibrated with water, and the plenum volumes with mercury, as described in Appendix A to this report. FaEach plenum was filled to ambient pressure with CO_{2}, the gas beingeprepared by acidifying an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in a reaction vessel attached to a high vacuum system. This method insured that the CO_{2} was free of other gaseous contaminants such as $\mathrm{N}_{2} 0$. The gas from an individual plenum was transferred, as described below, into a five liter flask and combined there with the selected carrier gas. While the flask temperature was controlled to within $0.01^{\circ} \mathrm{C}$, the ambient pressure was measured toethe nearest $0_{6} 1 \cdot \mathrm{~m}_{0}{ }^{7} \cdot \mathrm{CO}_{2}$ infraredrared index values, based on comparisons with Scripps primary reference gas standards, were then determined using the APC analyzer.asiyzer The CO_{2} concentrations of the gas mixtures ranged from approximately 240 to 430 ppm .

II. Experimental Procedures

A. Preparation of CO_{2} Gas

An aqueous solution, approximately 0.56 M in $\mathrm{Na}_{2} \mathrm{CO}_{3}$, was prepared in a one liter volumetric flask by weighing out 59 grams of Baker reagent anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dissolving it in single distilled water obtained from Dr. Joris Gieskes's quartz distillery at 3255

Sverdrup Hall. Weighings were made on an Ohaus Triple Beam balance with a sensitivity of 0.5 g . Since the concentration was not critical, the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was not dried.

A solution of $1.6 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ was prepared by diluting 105 ml of Mallinckrodt reagent $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ solution of density 1.76 in one 1iter of single distilled water.

The apparatus used to prepare CO_{2} gas is depicted in Figure 1. Fig. 1
The procedure used to fill the plenums was as follows. Stopcock $S 3$ was closed, and all the rest of the stopcocks were opened, including those on the plenums. Stopcock $S 7$ was then opened to the 1ine. The system between the stopcock S3 and stopcock S8 was pumped down for three to four hours. This removed CO_{2} adsorbed onto the glass walls and hydrocarbon joint and stopcock grease in the vacuum system. At the end of this period, the pressure of the vacuum system was measured by an Autovac Pirani-gauge conductance bridge with four individual gauge probes, and found to be less than 1.0 millitorr. Then a reaction vessel with a special funnel was attached as shown in Figure 1, and 50 ml of $0.56 \mathrm{M} \mathrm{Na} \mathrm{CO}_{3}$ solution was pipetted via the funnel into the reaction vessel from a calibrated open ended standard pipette. A teflon coated magnetic stirring bar was inserted into the solution and the top assemblage of the reaction vessel was installed. This assemblage consisted of a special 40 ml capacity pipette closed at both ends with a $4 \mathrm{~mm} 120^{\circ}$ curved bore stopcocks (S1 and S2), and with a 30 ml open ended chamber above. Stopcock S2 was opened, stopcock S1 was closed, and

CO_{2} SAMPLE PREPARATION RACK

Figure 1. Apparatus housed in 2328 Ritter Hall for preparation of CO_{2} gas for volumetric samples. The parts drawn in broken lines were added to the system after the experiment began (See section IV, C) Parts removed at this time are also indicated.
the magnetic stirrer was turned on. Thirty ml of the previously prepared $1.6 \mathrm{M}_{3} \mathrm{PO}_{4}$ was introduced into the open ended chamber above the reaction vessel. Stopcock S9 was closed, stopcock S3 opened, and after the line pressure at Pirani-gauge $G 2$ had fallen to 1 mm or less, stopcock S2 was closed and stopcock S1 opened to drop the $\mathrm{H}_{3} \mathrm{PO}_{4}$ into a pipette between stopcock S 1 and stopcock S2. Enough additional $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution was carefully added via the open-ended chamber to fill the pipette without allowing any bubbles of air to enter the pipette. Then stopcock S1 was closed and stopcock S2 opened slowly to let the $\mathrm{H}_{3} \mathrm{PO}_{4}$ drip onto the $\mathrm{Na}_{2} \mathrm{CO}_{3}$. About three minutes were allowed for the addition of the acid to the salt. The pressure, as measured by Pirani-gauge G2, was not allowed to rise above 2 mm during this process. Stopcock $S 2$ was closed for a few seconds if the pressure at Pirani-gauge G2 rose too high. A spherical trap, chilled to dry ice temperature in tandem with the reaction chamber, removed the bulk of the water vapor from the CO_{2} stream. The CO_{2} was frozen out in a concentric spherical liquid nitrogen trap beyond the water trap. After all detectable CO_{2} had been driven from the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and the solution had frozen, stopcocks S3 and S4 were closed, and a liquid nitrogen bath was placed around U-trap U1. Stopcock $S 8$ was then closed, the liquid nitrogen removed from the bulb, and the CO_{2} sublimed into U-trap U.L. This process required about fifteen minutes. Stopcock 55 was then closed and stopcock 58 opened to pull out any non-condensible gases. When
the pressure at Pirani-gauge G4 fell below 1 millitorr, a liquid nitrogen bath was placed around U-trap U2. Stopcock S 8 was then closed and the liquid nitrogen bath on U-trap Ul replaced with dry ice. About twenty minutes later, with CO_{2} sublimed into U-trap U2, stopcock S6 was closed and stopcock S8 opened. When the vacuum at Pirani G4 fell below 1 millitorr, stopcock S9 was opened and stopcock 58 closed. A liquid nitrogen bath was then placed around one of the long plenums. The liquid nitrogen bath on U-trap $U 2$ was then replaced with dry ice.

After about twenty minutes, with the CO_{2} now sublimed into the plenum, chilled with liquid N_{2}, stopcock $S 7$ was closed and the liquid nitrogen trap taken off the plenum so that it could warm. Just as the CO_{2} released from that plenum reached atmospheric pressure in the line and all of the other plenums, stopcock S7 was opened to the atmosphere so that excess CO_{2} could vent. When the thawing in the plenum was complete, the plenum manifold and tube were detached from the line at the standard taper glass joint immediately below stopcock. S9. The purpose of the long narrow tube from stopcock $S 9$ to the plenum manifold was to prevent back diffusion of lab air into the plenums while allowing the plenums to be in equilibrium with atmospheric pressure. The plenum manifold was placed in a controlled temperature bath for five minutes with all plenum stopcocks still open. The bath temperature was measured with a Beckman mercury thermometer calibrated
by Walter Bryan of NORPAX against a NBS calibrated thermometer. It was controlled with a mercury contract switch that operated a 50 watt light bulb to heat the bath. Cooling was furnished by circulating water about one-half degree C cooler than the bath through a coil of copper tubing immersed in the bath. The ambient pressure was measured with a mercury wall barometer-to 0.1 mm : With the apparatus at temperature equilibrium, the plenum stopcocks were closed and the temperature and pressure recorded. The plenums were immersed in liquid nitrogen for storage.
B. Preparation of Gas Mixtures

The apparatus used for gas mixture preparation is shown in Figure 2.

Carrier gas was obtained commercially as follows. Nitrogen was Liquid Carbonic Corporation's Water Pump Nitrogen, 99.98% purity. Argon was also from Liquid Carbonic. The personnel at Liquid Carbonic felt that it was probably 99.99% pure. Oxygen was Liquid Carbonic's Commercial Grade, 99.5% pure.

Stopcock S10 was opened to allow carrier gas from a high pressure steel cylinder to flow through the apparatus via an ascarite trap to insure that the carrier gas was free of CO_{2}. After three minutes, stopcocks S10 and S11 were opened to the vacuum line and the gas was vented through stopcock S12. A five-1iter flask was im-

Figure 2. Apparatus housed in 2328 Ritter Hallnfor making volumetric gas mixtures, if:
mersed in the controlled temperature bath and connected to the apparatus as shown. Then stopcock $S 11$ was closed and a CO_{2} plenum to be paired with the flask installed. Stopcock S10 was opened from the carrier gas cylinder to continue the flushing through the line. Stopcock S12 was then opened and the vacuum line as far as the flask stopcock was evacuated to less than 1 millitorr after opening stopcock S11. Then stopcock S11 was closed. A liquid nitrogen bath was placed on U-trap $U 3$ and the plenum stopcock was opened. After the CO_{2} had completely sublimed from the plenum into U-trap U 3 as indicated by the vacuum returning to less than 1 millitorr, stopcock $S 12$ was closed and the flask stopcock opened. The liquid nitrogen was removed from U-trap U3 and the CO_{2} expanded into the line and the five-liter flask. Stopcock S11 was then opened to the carrier gas line. The CO_{2} was swept into the flask in a stream of CO_{2}-free carrier gas. As the carrier gas filled the line, the bulb on the mercury manometer was raised to prevent CO_{2} from being trapped in the manometer tube as the mercury was pushed down. Filling to atmospheric pressure took ten to fifteen minutes. When the flask pressure was about 1 mm less than ambient, stopcock S10 was opened to the atmosphere and the flask was equilibrated in the controlled temperature bath for ten minutes. A pressure in the system slightly less than ambient before opening to atmospheric assured that no CO_{2} would be lost from the flask into the line upon equilibrating the system with the outside. Then.
the flask stopcock was closed and pressure and temperature recorded in the same manner as with the plenum filling. Each flask so filled was allowed to stand overnight or longer to allow thorough mixing of CO_{2} with the carrier gas. Flasks were stored in the dark to prevent photo-oxidation of the Apiezon " N " stopcock grease and resulting addition of CO_{2} to the sample. As discussed below, each flask containing oxygen or argon was analyzed four times on the APC analyzer. Flasks containing nitrogen were analyzed six times each. III. Results and Discussion

The plenums were paired with five-liter flasks inversely according to volume, e.g. the smallest plenum with the largest flask. This maximized the CO_{2} concentration range in the prepared gas mixtures. Seven gas mixtures were obtained for each carrier gas.

Table 1 lists the index values obtained for the gas mixtures from the APC analyzer. Listed are the index values from the 1956 Scripps index scale and the 1959 adjusted index values. The latter were used in all data interpretations. Table 2 summarizes these

Table 1

Table 2 numbers.

Four aliquots of gas were run against the reference gases routinely used as flask standards with adjusted index values of 319.30 and 355.44 ppm. From the $\mathrm{CO}_{2}-\mathrm{N}_{2}$ samples and additional two aliquots were run against two selected manometric standards with adjusted index values of 311.17 and 354.47 ppm. Aliquots of gas from the low manometric reference gas, adjusted index value 180.83 ppm, and
from the high manometric reference gas, adjusted index value $/ 842.55 \mathrm{ppm}$, were also analyzed with the $\mathrm{CO}_{2} \mathrm{O}_{2}$ mixtures. Uncertainties in the index values of the reference gases and in recorder scale factor were responsible for the minor differences in computed index values of the aliquots run against flask standards and those run against manometric standards. Since the manometric standards were used only In connection with $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures, comparisons based on these standards were omitted from the averages listed in Table 2.

Table 3 lists the laboratory data from the volumetric syntheses of gas mixtures. Table 4 lists the gas pressure data and calculated gas pressures. Table 5 lists the volumetric data and volumetric Table 5

Table 3
Table 4 CO_{2} concentrations.

The volumetric concentrations were calculated according to the formula:

$$
\begin{equation*}
\frac{n_{1}}{n_{2}}=\frac{10^{6} \nabla_{1} B_{2}\left(T_{2}\right)}{V_{2} B_{1}\left(T_{1}\right)} \frac{1-\sqrt{1+\frac{4 \mathrm{P}_{1} \mathrm{~B}_{1}\left(\mathrm{~T}_{1}\right)}{\mathrm{RT}_{1}}}}{1-\sqrt{1+\frac{4 \mathrm{P}_{2} \mathrm{~B}_{2}\left(\mathrm{~T}_{2}\right)}{\mathrm{RT}_{2}}}} \tag{1}
\end{equation*}
$$

which derives from

$$
\begin{equation*}
P_{i} V_{i}=n_{i} R T_{i}+B_{i}\left(T_{i}\right) \frac{n_{i}}{V_{i}} \tag{2}
\end{equation*}
$$

where: subscript 1 is CO_{2}
subscript 2 is carrier gas
subscript 1 is either gas
n is number of moles of gas
$\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}$ is CO_{2} mole fraction in ppm
V is volume of gas vessel in cc
T is gas temperature in ${ }^{\circ} \mathrm{K}$
R is gas constant in erg/mole-K ${ }^{\circ}$
P is gas pressure in dynes $/ \mathrm{cm}^{2}$, obtained by setting $P=\rho g h$,
.- Where h is the observed height in cm of the column of mercury
$=$ In'the barometer; g is the local acceleration of gravity ($979.558 \mathrm{~cm} / \mathrm{sec}^{2}$), ρ is density of mercury in the barometer, obtained from linear interpolation of tabulated mercury densities in "Handbook of Chemistry and Physics", 43rd edition, p. 2157, Chemical Rubber Publishing Co., 1962. Handbook values were divided by 1.000027 to convert $\mathrm{g} / \mathrm{m} 1$ to g / cc.
$B(T)$ is the second density virial coefficient of gas at temperature T, obtained by quadratic interpolation of values of virials from tables in "Pressure-Volume-Temperature Relationships of Gases Virial Coefficients", Heat Division, National Bureau of Standards, Washington, D.C., 1971 (the virial at the lowest tabulated temperature higher than T plus the virials at the two highest tabulated temperatures lower than T were used in the interpolation). Units are cc/mole.

Table 6 lists the adjusted index values and volumetric CO_{2} concentrations for the various gas mixtures.

The volumetric concentrations were plotted as functions of adjusted index values by computer (see Figure 3). The computer constructed a cubic curve by least squares to run through the points. The cubic function fit the data points better than any other form of function tried. One curve was drawn for each carrier gas.

They were of the form

$$
\begin{equation*}
v=A_{0}+A_{1} \cdot J+A_{2} \cdot J^{2}+A_{3} \cdot J^{3} \tag{3}
\end{equation*}
$$

where V was volumetric CO_{2} concentration and J was 1959 adjusted index value. Table 7 lists the coefficients A_{i} for each carrier gas. Table 7

The programs indicated that the best way to relate the changes in index values caused by changing carrier gas was to assume that the quotient:

$$
\frac{\mathrm{J}_{\mathrm{N}_{2}}{ }^{\mathrm{J}} \mathrm{X}}{{ }^{\mathrm{J}_{2}}}
$$

was constant, where $\mathrm{J}_{\mathrm{N}_{2}}$ was adjusted index value for N_{2} carrier gas and J_{X} was adjusted index value for other carrier gases. In other words, the substitution of any carrier gas for N_{2} depressed the adjusted index value by a constant factor independent of CO_{2}-concentration.

Figure 3. Calibration curves for CO_{2} in various carrier gases. Volumetric CO_{2} concentration is plotted vs. 1959 Adjusted Index vaiue. The curve furthest to the right is from $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures; the middle curve is from $\mathrm{CO}_{2} \mathrm{O}_{2}$ mixtures; and the curve furthest to the left is from $\mathrm{CO}_{2}-\mathrm{Ar}$ mixtures.

Table 8 lists the values of this factor for various CO_{2} mole fractions, where $\mathrm{J}_{\mathrm{N}_{2}}: \mathrm{J}_{\mathrm{Ar}}$, and $\mathrm{J}_{\mathrm{O}_{2}}$ were computed from equation (3) using the coefficients of Table 7.

The average depression in adjusted index value caused by replacing N_{2} with Ar was 8.24% with an absolute standard deviation (σ) of 0.26%. Adjusted index values for $\mathrm{O}_{2}-\mathrm{CO}_{2}$ averaged 5.26% lower than those for $\mathrm{N}_{2}-\mathrm{CO}_{2}$ with an absolute standard deviation of 0.18%.

If it is assumed that these depressions in adjusted index values are. linear with mole fraction of the non $-N_{2}$ carrier gas, the depression in index value caused by replacing N_{2} with air, if air is 0.934% Ar and $20.946 \% \mathrm{O}_{2}$, can be calculated by the formula

$$
\frac{\mathrm{J}_{\mathrm{N}_{2}}^{-\mathrm{J}_{\mathrm{Air}}}}{\mathrm{~J}_{\mathrm{N}_{2}}}=0.00934 \cdot 0.0824+.20946 \cdot 0.0526=1.18 \%
$$

An independent method of measuring the depression in 1959 adjusted index value caused by the presence of O_{2} and Ar in air was performed by P. R. Guenther of the Scripps laboratory research group using a constant volume manometer in 2317 Ritter Hall. As opposed to the volumetric method of synthesizing gas mixtures and determining the CO_{2} concentration on the APC analyzer, the manometric method was to analyze a gas mixture from a compressed gas cylinder by removing an aliquot, measuring its volume, pressure and temperature, and extracting the CO_{2} and measuring its volume, pressure and temperature. Thesergas mixtures were also run extensively on the APC analyzer. Manometric analyses done on $\mathrm{CO}_{2}-\mathrm{N}_{2}$ and
CO_{2}-air mixtures indicated a lowering of the adjusted index value on the APC analyzer of 1.20% (see Manometric Report III, Guenther, 1976). Thus the air corrections measured by the two methods agree quite well. Guenther also analyzed some artificial air mixtures, containing about 330 ppm CO_{2}, prepared by Liquid Carbonic Corporation and certified at $20 \% \mathrm{O}_{2}$ in N_{2}. He obtained O_{2} mole fractions on the artificial air by a paramagnetic comparison with real air with its precisely know O_{2} mole fraction. He normalized the measured O_{2}-caused depression in 1959 adjusted index value for artificial air to real air 0_{2}-mole fraction. The argon caused depression, deduced from the difference in depression between artificial and real air, agreed very closely with the direct volumetric determination.

It is concluded that the adjusted index value obrained for an air sample with the Scripps APC analyzer in 2317 Ritter Hall should be-corrected by adding 1.2% to its value to obtain the adjusted index value the APC analyzer would yield if only N_{2} were present in the sample as carrier gas (called virtual adjusted index by Guenther). Both this virtual adjusted index and the actually obtained adjusted index value can be converted to CO_{2} mole fraction using the relationship between adjusted index value and mole fraction for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures. sThe difference between the two mole fractions obtained is the error in CO_{2} concentration read by the APC analyzer which results from comparing air samples to $\mathrm{CO}_{2}-\mathrm{N}_{2}$ standards. The contribution to
this error of O_{2} and Ar in the air can also be calculated from the $\mathrm{CO}_{2}-\mathrm{O}_{2}$ and CO_{2}-Ar mixture comparisons with $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures in the volumetric experiment (Table 7) and the manometric artificial air analyses. Table 9 lists the errors in CO_{2} mole fraction caused Table 9 by the different air carrier gases at 1959 adjusted index values of 310,320 , and 330 ppm . The results of both volumetric and manometric measurements are included.

IV. Supplemental Experiments

A. Influence of $\mathrm{N}_{2} \underline{\mathrm{O}}$ on the Infrared CO_{2} Analyzer

An experiment was conducted to determine the effect of $\mathrm{N}_{2} \mathrm{O}$ on the response of the APC infrared analyzer to CO_{2}. The plenums were filled to ambient pressure directly from a cylinder of medical grade (99.9\%) $\mathrm{N}_{2} \mathrm{O}$ from L \& V Industrial Supply Inc., Encinitas, California, on the vacuum line used for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures. They were then placed in the controlled temperature bath described earlier. After waiting for five minutes to achieve temperature equilibrium, the plenums were placed in the liquid N_{2} bath for storage described earlier. The $\mathrm{N}_{2} \mathrm{O}$ was not purified because it was assumed that the APC analyzer would be so insensitive to $\mathrm{N}_{2} \mathrm{O}$ that minor impurities would not detectably affect the APC analyzer's response to $\mathrm{N}_{2} \mathrm{O}$.

After warming a given plenum, the $\mathrm{N}_{2} \mathrm{O}$ in it was swept into
a five liter flask with N_{2} gas according to the procedure for CO_{2} in N_{2} described above. The resulting mixture was then analyzed on the APC analyzer. A vacuum pen trace was first obtained and
the displacement from the vacuum trace caused by $\mathrm{N}_{2} \mathrm{O}$ noted when the $\mathrm{N}_{2} \mathrm{O}-\mathrm{N}_{2}$ mixture was put into the analyzer cell. The laboratory data are recorded in Table 10. The lowest concentration mixture, 240 ppm of $\mathrm{N}_{2} \mathrm{O}$, caused a barely readable displacement of 0.2 scale divisions, and the highest concentration mixture, $430 \mathrm{ppm} \mathrm{N}_{2} \mathrm{O}$, caused a displacement of 0.3 scale divisions. At the given span setting, $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures of similar concentration caused displacements of 60 and 90 scale divisions, respectively. These were the low manometric standard, cylinder No. 2408, manometric CO_{2} concentration 196.90 ppm , and the high manometric standard, cylinder No. 34316 , manometric CO_{2} concentration 472.97 ppm . Therefore, the analyzer was approximately 300 times as sensitive to CO_{2} as to $\mathrm{N}_{2} \mathrm{O}$ at these low concentrations.

Another experiment was run with higher $\mathrm{N}_{2} \mathrm{O}$ concentrations. Medical grade $\mathrm{N}_{2} \mathrm{O}$ was expended into each of three previously evacuated 5-liter flasks to a specific pressure. The flask stopcocks were closed and the connecting vacuum line was pumped to less than 1 millitorr, then filled with a $\mathrm{CO}_{2}-\mathrm{N}_{2}$ reference gas from a high pressure cylinder to a pressure greater than that of the $\mathrm{N}_{2} \mathrm{O}$ in the flask. Thus when the flask stopcock was opened, no $\mathrm{N}_{2} \mathrm{O}$ was lost into the vacuum line. With the stopcock open the flask was filled to ambient pressure with the $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixture. The result was a $\mathrm{CO}_{2}-\mathrm{N}_{2}$ sample considerably contaminated with $\mathrm{N}_{2} \mathrm{O}$. Pressures were measured on a mercury column read with a meterstick. Table 11 Table 11 lists the results. The $\mathrm{N}_{2} 0$ pressures of the mixtures were 5.1 mm Hg ,
9.3 mm Hg , and 18.1 mm Hg . The reference gas used for the first two mixtures were from cylinder No. 6071 with an adjusted index value of $318.40 \mathrm{ppm} \mathrm{CO} 2_{2}$. For the third mixture the reference gas came from cylinder No. 4285 with an adjusted index value of 349.90 ppm CO_{2}. All the CO_{2} adjusted index values were converted to mole fractions using the cubic relationship, in equation (3), for $\mathrm{CO}_{2}-\mathrm{N}_{2}$ mixtures with the coefficients listed in Table 7. The CO_{2} mole fractions were corrected for the dilution caused by the added $\mathrm{N}_{2} \mathrm{O}$ by the relationship

Concentrations of $\mathrm{N}_{2} \mathrm{O}$ were computed to by 6696,12208 , and 23756 ppm -by the ratios of $\mathrm{N}_{2} \mathrm{O}$ pressure to ambient pressure. The response ratios found by infrared analysis were approximately 550,740 , and $950 \mathrm{ppm} \mathrm{N}_{2} \mathrm{O} / \mathrm{ppm} \mathrm{CO} 2$, respectively. Therefore, the $\mathrm{N}_{2} \mathrm{O}$ response of the APC analyzer is not linear with CO_{2} response but decreases with increasing concentration of $\mathrm{N}_{2} \mathrm{O}$. This result is consistent with finding a ratio of 300 at low $\mathrm{N}_{2} \mathrm{O}$ concentration. It is concluded that normal air, which contains about $0.3 \mathrm{ppm} \mathrm{N}_{2} \mathrm{O}$, can be analyzed for CO_{2} by the infrared method without making any correction for the infrared absorption of $\mathrm{N}_{2} \mathrm{O}$, since air $\mathrm{N}_{2} \mathrm{O}$ would cause a pen displacement on theirecorder equivalent to approximately $0.001 \mathrm{ppm} \mathrm{CO} \mathbf{2}^{\text {. }}$
B. Influence of $\mathrm{H}_{2} \mathrm{O}$ on the Infrared CO_{2} Analyzer The influence of water vapor on APC analyzer response was also determined. About 5 cc of single distilled water was injected into four previously evacuated 5-1iter flasks and the flasks brought to ambient pressure with reference gases asidescribed above. -Two flasks were filled with reference gas from cylinder No. 6071 and two were filled from cylinder No. 4285. The samples were run .. on the APC analyzer with and without dry ice on the cold trap on the line leading to the analyzer cell. The water vapor was assumed to be in equilibrium with liquid water at the ambient temperature. The vapor pressure was calculated from data listed in the Handbook of Chemistry and Physics, 43rd edition, p. 2361-2364, Chemical Rubber Publishing Company, 1962. Tables 10 and 12 list the results of this experiment.

As with the $\mathrm{N}_{2} \mathrm{O}$ sensitivity experiment, adjusted index values were converted to mole fractions by the volumetric cubic relationship, and mole fractions were corrected for dilution by the added interfering gas, in this case, water vapor. At the laboratory ambient temperature of $22.0^{\circ} \mathrm{C}$, the $\mathrm{H}_{2} \mathrm{O}$ concentration (the ratio of vapor pressure of liquid water to ambient pressure) was approximately 26300 ppm . The average ppm $\mathrm{H}_{2} \mathrm{O} / \mathrm{ppm} \mathrm{CO} \mathrm{CO}_{2}$ response ratio was found to be 660. When $319 \mathrm{ppm} \mathrm{CO} \mathrm{CO}_{2}$ was present, the ratio was 680 ; when 350 ppm CO ${ }_{2}$ was present the ratio was 630 .

It can concluded that water vapor, as well as $\mathrm{N}_{2} \mathrm{O}$, does not interfere significantly with the analyzer during routine air CO_{2} measurements. Since water vapor in equilibrium with water ice at dry ice temperature is about 0.7 ppm , and the response ratio for water was 660 to 1 , the recorder pen displacement caused by water is equivalent. to approximately $0.001 \mathrm{ppm} \mathrm{CO}_{2}$, provided that the dry ice trap is removing all water vapor above the equilibrium vapor pressure.

C. Manometer Volume Calibration

The 4 cc chamber in the manometric system in Room 2317 Ritter Hall was calibrated with volume-calibrated CO_{2} plenums used in the experiments described above. The largest and smallest plenums were used. At first the same procedure was used for filling them with CO_{2} as previously described. However, discrepancies occurred between results obtained from the small and large plenums. The large plenum results indicated a larger volume for the 4 cc chamber. The liquid N_{2} bath was placed on the larger plenum to trap purified CO_{2} prior to subliming itinto the plenums and plenum manifold. If the purification described above had failed to remove all of the water vapor, it could possibly have collected in the large plenum with the CO_{2}, remained condensed on the dry ice in the large plenum while the CO_{2} filled the manifold and plenums, and evaporated after all CO_{2} ice was gone, but remained in the large plenum because of slow diffusion through CO_{2} at 1 atmosphere
pressure in a long, narrow tube. This water vapor would have been removed in the dry ice-covered U-traps used by Guenther in transferring the CO_{2} from the plenum to the 4 cc chamber. The result would have been less gas in the 4 cc chamber than calculated and a consequent lower pressure reading on the gas in the 4 cc chamber than should have been obtained, resulting in an erroneously large volume.

This was consistent with a finding that the samples contained residual water vapor by the following test. The CO_{2} was transferred from the large plenum to a U-trap at liquid nitrogen temperature with a dry ice trap on the plenum. After transfer, the manifold to which the plenum was attached was closed to the U-trap and the dry ice removed from the plenum. The pressure in the manifold then rose from less than 1 millitorr to 7 or 8 millitorr. The manifold volume was estimated to be about 200 times the plenum volume. Therefore, the previous water vapor pressure in the plenum was evidently about 1.5 mm , or 2 parts per thousand, an unacceptable contamination. This phenomenon was not noted when the small plenum was attached to the manifold. To eliminate water vapor from the CO_{2} samples, four alterations were made in the procedure for filling the CO_{2} plenum:
(1) A glass flask consisting of a closed 20 mm diameter tube 10 cm long with an attached glass stopcock was placed on the vacuum line next to stopcock S8 (see Figure 1) . CO_{2} could be distilled back and fourth between flask and U-trap U 2 as many times as necessary to remove
residual water. A liquid N_{2} bath was placed on the flask, the flask stopcock opened, stopcock $S 8$ closed, and liquid N_{2} on the trap U2 replaced with dry ice. After about $11 / 2$ hours, the flask stopcock was closed, the dry ice taken off trap U 2 , stopcock S 8 opened, and a heat gun played on trap $U 2$ to warm it up and drive off adsorbed water. Then a liquid N_{2} bath was place on U-trap U 2 , stopcock S8 closed, a dry ice trap placed on the flask, and the flask stopcock opened. This transfer took about 1 hour. Then stopcock $S 7$ was closed, stopcock $S 8$ opened, the dry ice taken off the flask and a heat gun played on the flask. Stopcock $S 7$ was then opened from U-trap U2 to stopcock S8. This process was repeated twice.
(2) A large vial was put onto the plenum manifold initially to trap the CO_{2}. This vial consisted of a closed 12 mm tube 20 cm long with attached glass stopcock (see Figure 1). The CO_{2} was then sublimed into this vial from the line, and from the vial into the volumecalibrated plenums and connecting manifold. Any water in the vial thus tended to remain there and not enter the calibrated plenum, just as previously the water remained in the large plenum.
(3) CO_{2} gas was introduced directly from a cylinder of commercial grade CO_{2} gas purchased from the Matheson Company, Inc., 99.5% pure, rather than derived from a $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. This eliminated liquid water from the vacuum system (see Figure 1). By setting the CO_{2} flow from the cylinder such that the pressure, registered on Pirani-gauge

G2 was 0.5 mm , sufficient CO_{2} for the experiment was frozen in about 10 minutes into the liquid N_{2} concentric spherical trap. Then stopcocks S3 and S4 were closed and the process described above for $\mathrm{Na}_{2} \mathrm{CO}_{3}$-derived CO_{2} was repeated, with the additional glass vessels and procedures described above in items (1) and (2) of this section.
(4) The bulb trap immersed in the dry ice slurry between stopcocks S3 and S4 was replaced with a simple thimble trap filled with glass wool. This removed a greater proportion of the water vapor from the CO_{2} stream than the spherical trap.

These modifications in the procedure seemed to remove all water from the CO_{2}, as no further evidence came to light of water vapor in the CO_{2} transferred into the 4 cc chamber of the manometer. Also, no further discrepancies between 4 cc manometer chamber volume determinations measured by CO_{2} from different plenums were found.

The initial calibrations of the 4 cc chamber were not included In Manometer Report IV. Further measurements, after eliminating the water vapor problem, are reported in Manometer Report IV.

Water in the CO_{2} plenums may explain some of the scatter in the points about the calibration curves for each carrier gas, (figure 3, Table 6).
D. Calibration of the Wall Barometer in 2328 Ritter Hall
f. On 15 June 1976 the wall barometer from which pressures were obtained in the foregoing experiments was calibrated with the cathetometer and columns No. 2 and 4 in the manometer in 2317

Ritter Hall. (For definition of column numbers, see Manometer Report I) Atmospheric pressure was introduced to column No. 4 in the manometer, with column No. 2 connected to the vacuum pump. The doors to the laboratory rooms were opened to the hall in insure pressure equilibration. A pair of readings was taken by Mr. Peter Guenther on the level of mercury on column No. 4 (low level), followed by a pair of readings on column No. 2 (high level, vacuum), followed by readings on column No. 4, then No. 2, then No. 4. The pairs of readings were averaged together, and differences were calculated for each set of adjacent readings on columns No. 2 and No. 4. Temperatures of the case were read during readings of column No. 4.

While readings were being taken on the mercury level in column No. 4, the pressure was taken in 2328 on the wall barometer by Adams, along with the temperature of the mercury column from a thermometer attached to the barometer. The column heights read in 2328 were normalized to the temperature of the manometer.case by multiplying the wall barometer column height. by the ratio of mercury density at temperature of 2328 to mercury density at manometer case temperature. This resulted in average pressures of 762.40 mm by the cathetometer, and 762.42 mm by the wall barometer. These values were well within experimental error of each other, since the wall barometer is readable to only 0.1 mm .

Table 13 lists the data obtained in this experiment.
Table 13

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

*Manometric Reference Gases

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

TABLE I. Index and Adjusted Index Values for Volumetric Gas Samples

$\begin{aligned} & \text { Cylinder } \\ & \text { Primary } \end{aligned}$	Number High Span	Scale Difference Between Reference \qquad	Index Difference Between Reference \qquad	Flask Number	Scale Difference Between Sample and Primary	Index Difference Between Sample and Primary	Sample Index	Sample Adjusted Index
				MIXTUP				
4297	3755	22.9						
				35316*	84.1	109.16	427.05	452.31
				35316*	84.2	109.29	427.18	452.47
				2408 \dagger	-87.0	-112.93	204.98	181.69
				2408 +	-87.1	-113.06	204.83	181.51
				C-8	-60.2	-78.14	239.75	224.06
				C-8	-60.1	-78.01	239.88	224.22
				C-7	-38.1	-49.45	268.44	259.02
				C-7	-38.1	-49.45	268.44	259.02
				C-10	-16.6	-21.55	296.34	293.02
				C-10	-16.6	-21.55	296.34	293.02
				C-5	-4.0	-5.19	312.70	312.96
				C-5	-4.1	-5.32	312.57	312.80

* $\mathrm{High}-\mathrm{CO}_{2}$ manometric $\mathrm{CO}_{2}-\mathrm{N}_{2}$ compressed gas cylinder
tLow- CO_{2} manometric $\mathrm{CO}_{2}-\mathrm{N}_{2}$ compressed gas cylinder

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

> * $\mathrm{High}-\mathrm{CO}_{2}$ manometric $\mathrm{CO}_{2}-\mathrm{N}_{2}$ compressed gas cylinder tLow- CO_{2} manometric $\mathrm{CO}_{2}-\mathrm{N}_{2}$ compressed gas cylinder

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

$\begin{aligned} & \text { Cylinder } \\ & \text { Primary } \end{aligned}$	Number High Span	Scale Difference Between Reference Gases	Index Difference Between Reference Gases	Flask Number	Difference Between Sample and Primary	Index Difference Between Sample and Primary	Sample Index	Sample Adjusted Index
				MIXTUR				
4297	3755	22.9						
				35316*	84.1	108.93	426.82	452.07
				35316*	84.0	108.80	426.69	451.87
		-		2408 ${ }^{+}$	-87.1	-112.81	205.08	181.81
				$2408 \dagger$	-87.2	-112.94	204.95	181.66
				C-8	-60.1	-77.84	240.05	224.43
				C-8	-60.3	-78.10	239.79	224.11
				C-7	-38.3	-49.61	268.28	258.83
				C-7	-38.3	-49.61	268.28	258.83
				C-10	-16.7	-21.63	296.26	292.93
				C-10	-16.8	-21.76	296.13	292.77
				C-5	-4.2	-5.44	312.45	312.66
				C-5	-4.2	-5.44	312.45	312.66

*High- CO_{2} manometric $\mathrm{CO}_{2}-\mathrm{N}_{2}$ compressed gas cylinder tLow $-\mathrm{CO}_{2}$ manometric $\mathrm{CO}_{2}-\mathrm{N}_{2}$ compressed gas cylinder

TABLE 1. Index and Adjusted Index Values for Volumetric Gas Samples

TABLE 2. Summary of Index and Adjusted
Index Values for Volumetric Gas Samples
$\mathrm{CO}_{2}-\mathrm{N}_{2}$ MIXTURES

Flask No.	Index Values	Adjusted Index Values	Average Index	Avierage Adjusted Index
C-8	250.19	236.79		
	250.11	236.69		
	250.14	236.72		
	250.14	236.72		
	249.61*	236.08*		
	249.40*	235.82*	250.14	236.72
C-7	279.75	272.81		
	279.58	272.60		
	279.82	272.89		
	279.72	272.77		
	279.40*	272.38*		
	279.40*	272.38*	279.72	272.77
C-10	309.06	308.52		
	308.97	308.41		
	309.00	308.45		
	309.00	308.45		
	308.88*	308.31*		
	308.99*	308.44*	309.01	308.46
C-5	326.23	329.45		
	326.23	329.45		
	326.07	329.25		
	326.17	329.37		
	326.23*	329.45*		
	326.23*	329.45*	326.18	329.39
		-		
C-3	340.02	346.25		
	340.02	346.25		
	339.90	346.11		
	339.80	345.98		
	340.00*	346.23*		
	340.00*	346.23*	339.94	346.15

*Referred to values based on comparison with Manometric Standards not used in average.

TABLE 2. Summary of Index and Adjusted Index Values for Volumetric Gas Samples

$$
\mathrm{CO}_{2}-\mathrm{N}_{2} \text { MIXTURES }
$$

Flask No.	Index Values	Adjusted Index Values	Average Index	Average Adjusted Index
C-9	372.05	385.28		
	372.05	385.28		
	372.11	385.36		
	372.11	385.36		
	372.34*	385.64*		
.	372.24*	385.52*	372.08	385.32
C-11	403.61	423.74		
	403.41	423.50		
	403.41	423.50		
	403.41	423.50		
	403.77*	423.94*		
	403.87*	424.06*	403.46	423.56

*Referred to Manometric Standards - not used in average.

TABLE 2. Summary of Index and Adjusted Index Values for Volumetric Gas Samples CO_{2} - Ar MIXTURES

Flask No.	Index Values	Adjusted Index Values	Average Index	Average Adjusted Index
C-8	232.89	215.70		
	232.89	215.70		
	233.21	216.09		
	233.21	216.09	233.05	215.90
c-7	260.84	249.76		
	260.84	249.76		
	261.06	250.03		
	261.06	250.03	260.95	249.90
C-10	287.89	282.73		
	287.89	282.73		
	287.89	282.73		
	287.78	282.59	287.86	282.70
C-5	303.34	301.55		
	303.34	301.55		
	303.51	301.76		
	303.51	301.76	303.42	301.65
C-3	316.41	317.48		
	316.41	317.48		
	316.31	317.36		
	316.31	317.36	316.36	317.42
C-9	347.10	354.88		
	347.10	354.88		
	347.10	354.88		
	346.98	354.73	347.07	354.84
C-11	375.73	389.77		
	375.73	389.77		
	375.51	389.50		
	375.51	389.50	375.62	389.65

TABLE 2. Summary of Index and Adjusted Index Values for Volumetric Gas Samples

$$
\underline{C O}_{2}-\underline{\mathrm{O}}_{2} \text { MIXTURES }
$$

Flask No.	Index Values	Adjusted Index Values	Average Index	Average Adjusted Index
C-8	239.75	224.06		
	239.88	224.22		
	240.05	224.43		
	239.79	224.11	239.87	224.21
C-7	268.44	259.02		
	268.44	259.02		
	268.28	258.83		
	268.28	258.83	268.36	258.93
C-10	296.34	293.02		
	296.34	293.02		
	296.26	292.93		
	296.13	292.77	296.27	292.94
C-5	312.70	312.96		
	312.57	312.80		
	312.45	312.66		
	312.45	312.66	312.54	312.77
C-3	325.81	328.94		
	325.81	328.94		
	325.79	328.91		
	325.66	328.75	325.77	328.89
C-9	356.57	366.42		
	356.57	366.42		
	356.49	366.32		
	356.49	366.32	356.53	366.37
c-11	387.07	403.57		
	387.07	403.57		
	386.79	403.25		
	386.79	403.25	386.93	403.42

TABLE 3. Gas State Data ${ }^{3}$

CO_{2}		Gas Mixtures					$\begin{gathered} \text { Gas } \\ \text { Temp. }{ }^{\circ} \mathrm{C} \end{gathered}$
Plenum \qquad No.	Volume \qquad cc	Date	$\begin{aligned} & \text { Flask } \\ & \text { No. } \end{aligned}$		Barometer Reading mm	Barometer $\text { Temp. }{ }^{\circ} \mathrm{C}$	
P-1	1.2978	$\mathrm{CO}_{2} \mathrm{~N}_{2}$ Mixtures					
P-2	1.4619		Plenums	Variable	761.8	20.7	20.72
		14 MAY 74	C-8	5389.1	761.8	20.2	20.74
		14 MAY 74	C-7	5350.2	762.7	20.0	20.74
P-3	1.6360	14 MAY 74	C-10	5329.8	762.1	20.6	20.73
		14 MAY 74	C-5	5320.2	762.3	20.6	20.73
P-4	1.7457	14 MAY 74	C-3	5315.0	762.1	20.1	20.75
		14 MAY 74	C-9	5237.2	762.8	20.5	20.76
P-5	1.8359	14 MAY 74	C-11	5224.1	762.0	20.2	20.74
P-6	2.0367	$\mathrm{CO}_{2}=$-Ar Mixtures					
P-7	2.2733		Plenums	Variable.	763.2	21.8	20.74
				5389.1	763.9	19.7	20.76
		28 MAY 74	C-7	5350.2	763.1	20.7	20.77
		28 MAY 74	C-10	5329.8	764.1	20.3	20.77
		28 MAY 74	c-5	5320.2	764.1	19.7	20.76
		28 MAY 74	C-3	5315.0	763.7	20.6	20.76
		28 MAY 74	C-9	5237.2	764.0	20.5	20.77
		28 MAY 74	C-11	5224.1	763.4	20.6	20.78
		$\mathrm{CO}_{2} \mathrm{O}_{2}$ Mixtures					
			Plenums	Variable	760.0	20.7	20.75
		6 Jun 74	C-8	5389.1	758.5	20.3	20.75
		6 JUN 74	C-7	5350.2	758.5	20.3	20.74
		6 JUN 74	C-10	5329.8	758.3	20.9	20.76
		6 JUN 74	C-5	5320.2	757.8	20.4	20.76
		6 JUN 74	C-3	5315.0	757.9	20.6	20.76
		6 JUN 74	C-9	5237.2	757.9	20.3	20.75
		6 JUN 74	C-11	5224.1	758.0	20.8	20.76

TABLE 4. Gas Pressure Calculations

TABLE 4. Gas Pressūre Calculations

TABLE-5. Volumetric $\underline{C O}_{2}$ Concentrations

$\begin{aligned} & \text { Flask } \\ & \text { No. } \\ & \hline \end{aligned}$	CO_{2} Volume ci	CO_{2} Temp. ${ }^{\circ} \mathrm{C}$	CO_{2} Pressure ${ }_{2}$ Dynes/cm	$\begin{gathered} \mathrm{CO}_{2} \text { Density } \\ \text { Virial } \\ \mathrm{cm} / \text { mole } \\ \hline \end{gathered}$	Total Gas Volume cc	Total Gas Temp. ${ }^{\circ} \mathrm{C}$	Total Gas Pressure Dynes/cm	Total Gas Density Vir. L cc/mole	Gas Constant erg/ ${ }^{\circ}$ mole	Volumetric CO_{2} Concentrat ppm
$\mathrm{CO}_{2}-\mathrm{N}_{2}$	Mixtures									
C-8	1.2978	20.72	$1.01070: 10^{6}$	-127.3	5389.1	20.74	$1.01079,10^{6}$	-5.9	$8.31436 \cdot 10^{7}$	242.04
C-7	1.4619	20.72	$1.01070 \cdot 10^{6}$	-127.3	5350.26	20.74	$1.01202 \cdot 10^{6}$	-5.9	$8.31436 \cdot 10^{7}$	274:29
C-10	1.6360	20.72	$1.01070 \cdot 10^{6}$	-127.3	5329.8	20.73	$1.01112 \cdot 10^{6}$	-5.9	$8.31436 .10^{7}$	308.39
C-5	1.7457	20.72	$1.01070 \cdot 10^{6}$	-127.3	5320.2	20.73	$1.01138 \cdot 10^{6}$	-5.9	$8.31436 \cdot 10^{7}$	329:58
C-3	1.8359	20.72	$1.01070 \cdot 10^{6}$	-127.3	5315.0	20.75	$1.01121 \cdot 10^{6}$	-5.9	$8.31436 \cdot 10^{7}$	347:03
c-9	2.0367	20.72	$1.01070 \cdot 10^{6}$	-127.3	5237.2	20.76	$1.01206 \cdot 10^{6}$	-5.9	$8.31436 \cdot 10^{7}$	390.39
C-11	2.2733	20.72	$1.01070 \cdot 10^{6}$.	-127.3	5224.1	20.74	$1.01106 \cdot 10^{6}$	-5.9	$8.31436 \cdot 10^{7}$	437:24
$\mathrm{CO}_{2}-\mathrm{Ar}$	Mixtures		10心							
C-8	1.2978	20.74	$1.01236 \cdot 10^{6}$	-127.3	5389.1	20.76	$1.01367 \cdot 10^{6}$	-17:0	$8.31436 \cdot 10^{7}$	241.63
C-7	1.4619	20.74	$1.01236 \cdot 10^{6}$	-127.3	5350.2	20.77	$1.01243 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	274.51
C-10	1.6360	20.74	$1.01236 \cdot 10^{6}$	-127.3	5329.8	20.77	$1.01383 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	307.96
C-5	1.7457	20.74	$1.01236 \cdot 10^{6}$	-127.3	5320.2	20.76	$1.01394 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	329.15
C-3	1.8359	20.74	$1.01236 \cdot 10^{6}$	-127.3	5315.0	20.76	$1.01324 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	346.73
C-9	2.0367	20.74	$1.01236 \cdot 10^{6}$	-127.3	5237.2	20.77	$1.01366 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	390.23.
C-11	2.2733	20.74	$1.01236 \cdot 10^{6}$	-127.3	5224.1	20.78	$1.01284 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	437.02
$\mathrm{CO}_{2}=\mathrm{O}_{2}$	Mixtures		1.							
C-8	1.2978	20.75	$1.00831 \cdot 10^{6,}$	-127.3	5389.1	20.75	$1.00639 .10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	242.39
C-7	1.4619	20.75	$1.00831 \cdot 10^{6 .}$	- -127.3	5350.2	20.74	$1.00639 .10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	275.01
C-10	1.6360	20.75	$1.00831 \cdot 10^{6}$	-127.3	5329.8	20.76	$1.00602 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	309.08
C-5	1.7457	20.75	$1.00831 \cdot 10^{6}$	-127.3	5320.2	20.76	$1.00545 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	330.59
C-3	1.8359	20.75	$1.00831 \cdot 10^{6}$	-127.3	5315.0	20.76	$1.00555 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	347.98
C-9	2.0367	20.75	$1.00831 \cdot 10^{6}$	-127.3	5237.2	20.75	$1.00560 \cdot 10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	391.74
c-11	2.2733	20.75	$1.00831 \cdot 10^{6}$	-127.3	5224.1	20.76	$1.00564 .10^{6}$	-17.0	$8.31436 \cdot 10^{7}$	438.34

TABLE 6. Index Values, Adjusted Index Values, and Volumetric CO_{2}
Concentrations of Calibrated Gas Mixtures:

Flask Number	Plenum Number	$\begin{gathered} \text { Index } \\ \text { (Flask Tanks) } \\ \text { (ppm) } \end{gathered}$	Adjusted Index (Flask Tanks) (ppm)	Volumetric (ppm)	Index(Manometric Tanks)(ppm)		Adjusted Index (Manometric Tanks) (ppm)	
			'74 Mano. Equation		Vd-Equa.		74 Mano	Vol - Equa
C-8	P-1	250.14	236.72	242.21242 .04	$-.17$	249.50	24154235.94	+. 50
C-7	P-2	279.72	272.77	274.17274 .29	+. 12	279.40	273.81272 .38	$+.48$
C-10	P-3	309.01	308.46	$308.13 \quad 308.39$	+. 26	308.94	308.05308 .38	$+34$
C-5	P-4	326.18	329.39	329.21329 .58	$+.37$	326.23	329.27329 .45	$+.31$
C-3	P-5	339.94	346.15	346.74347 .03	$+.29$	340.00	$346.83 \mathbf{3 4 6 . 2 3}$	$+.20$
C-9	P-6	372.08	385.32	$390.10 \quad 390.39$	$+.29$	372.29	390.40385 .58	-. 01
C-11	P-7	403.46	423.56	435.85437 .24	$+1.39$	403.82	436.40424 .00	$+.84$

TABLE 6. Index Values, Adjusted Index Values, and Volumetric CO_{2} Concentrations of Calibrated Gas Mixtures :
$2 \mathrm{CaLi} \mathrm{CO}_{2}-\mathrm{K}_{2}$ Mixtures \times thres

Flask Number	Plenum Number	Index (ppm)	Adjusted Index (ppm)	Volumetric (ppm)	
C-8	P-1	233.05	215.90	241.63	
C-7	P-2	260.95	249.90	274.51	
C-10	P-3	287.86	282.70	307.96	
C-5	P-4	303.42	301.65	$329.15 *$	
C-3	P-5	316.36		317.42	346.73
C-9	P-6	347.07		354.84	390.23
C-11	P-7	375.62	389.63	437.02	

* jiggled Hg manometer bulb during equilibration; may have lost some CO_{2}

TABLE 6. Index Values, Adjusted Index Values, and Volumetric CO_{2} Concentrations of Calibrated Gas Mixtures
nl Ca 1; 0 gr Meres $\mathrm{CO}_{2}-\mathrm{N}_{2} \xrightarrow{\text { Mixtures }}$

Flask Number	Plenum Number	Index (ppm)	Adjusted Index (ppm)		Volumetric (ppm)
			239.87		224.21

TABLE 7.. Cubic Coefficients for Volumetric -i vs. 1959 Adjusted Index Plots

Carrier Gas	A_{0}	$\underline{A_{1}}$	$\underline{A_{2}}$	$\underline{A_{3}}$
$\mathrm{~N}_{2}$	39.706	0.93795	$-8.0035 \cdot 10^{-4}$	$1.8923 \cdot 10^{-6}$
Ar	12.580	1.3202	$-1.9615 \cdot 10^{-4 / 3}$	$3.5101 \cdot 10^{-6}$
O_{2}	75.027	0.62527	$3.6272 \cdot 10^{-4}$	$7.9242 \cdot 10^{-7}$

TABLE 8. Comparison of Infrared Analyzer* Response to $\mathrm{CO}_{2}-\mathrm{N}_{2}, \mathrm{CO}_{2}-\mathrm{Ar}$, and $\mathrm{CO}_{2}-\mathrm{O}_{2}$ Mixtures

Volumetric

240	234.45	214.34	221.57	0.0858	0.0549	.058131
260	256.98	234.95	243.26	0.0857	0.0534	.056400
280	278.80	255.12	264.04	0.0849	0.0559	.055901
300	299.84	274.72	283.99	0.0858	0.0529	.055812
320	320.10	293.66	303.16	0.0826	0.0529	.055878
340	339.56	311.87	321.61	0.0815	0.0529	.055813
360	358.24	329.34	339.39	0.0807	0.0526	.055541
380	376.16	346.05	356.55	0.0800	0.0521	.054999
400	393.37	362.04	373.13	0.0796	0.0514	.054244
420	409.88	377.31	389.17	0.0795	0.0505	.053216
440	425.75	391.92	404.70	0.0806	0.0494	.052014

*APC Analyzer in 2317 Ritter Hall.

TABLE 9. Carrier Gas Effects on APC Analyzer CO_{2} Analyses

1959 Adjusted Index \qquad	Method	$\begin{gathered} 20.94690 \\ \text { Error } \\ \begin{array}{c} \text { Caused by } \\ 0.93 \% 0_{2} \\ (\mathrm{ppm}) \end{array} \end{gathered}$	$\begin{gathered} \text { Error } \\ \text { Caused by } \\ 0.93 \% \text { Ar } \\ \text { (ppm) } \\ \hline \end{gathered}$	\qquad Correction \dagger (ppm)
310	Volumetric	3.44	0.24	3.69*
310	Manometric	3.50	0.20**	3.70
320	Volumetric	3.62	0.25	3.88*
320	Manometric	3.68	0.21**	3.89
330	Volumetric	3.81	0.26	4.08*
330	Manometric	3.87	0.23**	4.10

* sum of determined values of O_{2} and Ar
** difference between values for air and artificial air
\dagger to be added to CO_{2} mole fractions obtained from APC analyzer for air samples measured against $\mathrm{CO}_{2}-\mathrm{N}_{2}$ standards.
${ }^{7}$ TABLE 10. Index Values for $\mathrm{CO}_{2}-\mathrm{N}_{2}-\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}-\mathrm{N}_{2}-\mathrm{H}_{2} \mathrm{O}$ Mixtures

TAbLE 1I. \underline{N}_{2} O Effect on Infrared Analyzer*

$\begin{aligned} & \text { Flask } \\ & \text { No. } \end{aligned}$	Adjusted Index of $\mathrm{CO}_{2}-\mathrm{N}_{2} \mathrm{O}_{-\mathrm{N}}^{2}$	$\begin{gathered} \text { Apparent } \\ \mathrm{CO}_{2} / \\ \left(\mathrm{CO}_{2}+\mathrm{N}_{2}+\mathrm{N}_{2} \mathrm{O}\right) \\ \mathrm{Mole} \mathrm{Ratio} \\ \text { (ppm) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ \text { Pressure } \\ \text { (mm Hg) } \\ \hline \end{gathered}$	Total Pressure (mm Hg)	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} / \\ \left(\mathrm{N}_{2} \mathrm{O}+\mathrm{N}_{2}+\mathrm{CO}_{2}\right) \\ \text { Mole Ratio } \\ \text { (ppm) } \\ \text { (Pressure } \\ \text { Ratio) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Adjusted } \\ \text { Index of } \\ \mathrm{CO}_{2} / \\ \mathrm{N}_{2} \text { Mixtures } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} / \mathrm{N}_{2} \\ \text { Mole Ratio } \\ \hline \text { (ppm) } \\ \hline \end{gathered}$	```Actual CO2/ (N Mole Ratio (ppm) Corrected for N2O Dilution```	Apparent $\mathrm{CO}_{2} \mathrm{ppm}$ Seen by Analyzer as Result of $\mathrm{N}_{2} \mathrm{O}$	```Response Ratio (ppm N20/ \textrm{ppm CO}```
C-9	328.32	328.35	5.1	761.7	6696	318.40	318.29	316.16	12.19	550
C-10	330.82	330.93	9.3	761.8	12208	318.40	318.29	314.40	16.53	740
C-11	365.18	367.65	18.1	761.9	23756	349.90	350.97	342.63	25.02	950

*APC Analyzer in Room 2314 Ritter Hall

TABLE 12. Water Effect on Infrared Analyzer*

$\begin{aligned} & \text { lask } \\ & \text { No. } \end{aligned}$	$\begin{array}{r} \text { Temp. } \\ \underline{H}_{2}{ }^{0}{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { Pressure } \\ (\mathrm{mm} \mathrm{Hg}) \\ \hline \end{gathered}$	Total Pressure (mm Hg)	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} / \\ \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{N}_{2} \\ \text { Mole Ratio } \\ \text { (ppm) } \\ \text { (Pressure } \\ \text { Ratio) } \\ \hline \end{gathered}$	Adjusted Index Without Dry Ice Trap	Apparent $\left(\mathrm{N}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$ Mole Ratio \qquad (ppm)		$\mathrm{CO}_{2} \mathrm{I}$ \qquad $\left(\mathrm{N}_{2}+\mathrm{CO}_{2}\right)$ Mole Ratio (ppm)	Actual $\mathrm{CO}_{2} /$ $\left(\mathrm{CO}_{2}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$ Mole Ratio (ppm) Corrected for $\mathrm{H}_{2} \mathrm{O}$ Dilution	Apparent CO_{2} ppm Seen By Analyzer As Result $\text { of } \mathrm{H}_{2} \mathrm{O}$ \qquad	Response Ratio ($\mathrm{ppm} \mathrm{H}_{2} \mathrm{O} /$ $\xrightarrow{\mathrm{ppm} \mathrm{CO}} 2$)
C-3	22.0	19.827	761.5	26037	348.17	349.12	319.14	319.04	310.73	38.39	680
C-5	21.9	19.709	761.5	25882	347.39	348.29	318.36	318.25	310.01	38.28	680
C-7	22.1	19.951	761.6	26196	378.29	382.43	349.10	350.11	340.94	41.49	630
C-8	22.0	19.827	761.6	26037	377.97	382.06	349.10	350.11	. 341.00	41.06	630

*APC Analyzer in Room 2314 Ritter Hall

TABLE 13. Calibration of Wall Barometer

Vol I - Appendix

VOLUMETRIC REPORT I APPENDIX A

J. Alexander Adams Carbon Dioxide Project Scripps Institution of Oceanography La Jolla, Caiifornia 92093

August 27, 1975

I. Introduction

During January, February, and March 1974, seven five-liter glass flasks, one four-liter manometer flask, and seven glass plenums with volumes from $11 / 4$ to $21 / 4 \mathrm{cc}$ had their volumes calibrated. The overall technique in the case of the large flasks was to evacuate the volume to be measured, weigh the flask, fill it with distilled water from which dissolved air had been removed, and weigh again. The difference in the weights, assumed to be the weight of water, was divided by the known density to give the volume. Flasks C-8 and C-11 had this procedure repeated five times; C-3- C-5, C-7, C-9, and C-10 had it done twice. Three runs were made on manometer flask no. 2.

The same technique was used on the plenums, numbered P-1 through P-7, except that mercury was used instead of water. Each was filled and weighed five times.

The large flasks were weighed on a Mettler P-11N single-pan balance, serial no. 474434 in room 0256 Ritter Hall. (This room is part of Professor Harmon Craig's laboratory.) The plenums were weighed on a Seederer-Kohlbusch two-pan 5 kilogram analytical balance, register no. 6971 in 2328 Ritter Hall, using class S rhodium plated brass weights.

Water densities were obtained from the Handbook of Chemistry and Physics, 43rd edition, page 2155, Chemical Rubber Publishing Co., 1962.

Mercury densities were from the same source, page 2157.
Values at non-integer temperatures were obtained by linear interpolation between listed densities. The mass per cc was obtained by dividing the mass per ml by 1.000027 (Handbook of Chemistry and Physics, 43rd edition, pages 2157 and 3197).
II. Experimental Procedure
A. Large Glass Flask Calibrations

The procedure for the large flask calibrations was done with with apparatus shown in Figure 1 by the techniques described below.

Figure 1. Apparatus to Fill Large Glass Flasks with Water

Stopcock "C" is a 120° glass stopcock with the following positions:

POSITION 1

POSITION 2
-

POSITION 3

Stopcock "A" is an oblique bore glass vacuum stopcock to let air into the system; stopcock " B " is a hollow plug glass vacuum stopcock attached to the flask; stopcock " D " is a standard straight bore separatory funnel glass stopcock; stopcock "E" is a "T" three-way glass vacuum stopcock.

The apparatus was assembled with the stopcocks greased with Apiezon " N " lubricant. Liquid nitrogen was placed on both of two cold traps adjacent to the vacuum pump (not shown in Figure 1). Just enough liquid nitrogen was placed around the water trap to touch its bottom. A higher level of refrigerant was avoided to reduce tendency of the trap to plug up with ice.

Initially the flask to be calibrated was evacuated on another vacuum line and installed in the filling apparatus. With the filling system at ambient pressure stopcock "A" was closed and stopcock "E" was slowly opened to evacuate the system. Stopcock "C" was set in position 1. After evacuation was completed, the separatory funnel was filled with de-ionized water from the tap in 2328 Ritter Hall and the magnetic stirrer started.

Stopcock "D" was opened slightly and water admitted to the 4000 ml boiling flask. The separatary funnel was filled with additional water if necessary to complete the filling of the boiling flask.

When the boiling flask was filled to near the top, stopcock "D" was closed and the water boiled for five to ten minutes under vacuum. If. the top of the water trap got too cold, the water coming into the trap froze in the end of the inlet tube from the boiling flask and plugged it. To unplug it, stopcock "E" was closed, stopcock "A" was slowly opened to the air, and the water trap heated with a heat gun until the ice plug fell off. Then stopcock " A " was closed, stopcock "E" slowly opened, and the operation continued.

After five to ten minutes had elapsed without interference of any plug of ice, stopcock "C" was turned to position 2 for about thirty seconds to evacuate the siphoning tube, and the magentic stirrer was turned off. Stopcock "C" was then turned to position 3.

Stopcock "E" was closed and stopcock "A" was slowly opened to air. The water was thus forced up the siphoning tube and filled the tube running from the 4000 ml boiling flask to the flask to be calibrated.

Stopcock "B" was opened slightly and water admitted to the flask to be calibrated until the water level in the 4000 ml boiling flask was close to the bottom of the siphoning tube. Then stopcock "B" was closed.

To prepare additional degassed water, stopcock "A" was closed and stopcock " E " slowly opened. After about one minute of evacuation, stopcock "C" was turned to position 1. The magnetic stirrer was turned on and stopcock " D " was opened slightly to refill the 4000 ml boiling flask. Then stopcock " D " was closed and the water boiled under vacuum for five to ten minutes. The magnetic stirrer was then turned off and the previous procedure used to complete filling of the flask to be calibrated.

After filling, the water in the flask to be calibrated was slightly heated with a heat gun with the system still open to the vacuum pump via stopcock "E". Bubbles were jarred loose from the bottom half of the flask by tapping. The water was warmed to about 2° above ambient temperature and boiled for ten minutes under vacuum. Then stopcock " E " was closed, stopcock " A " slowly opened to let air pressure into the system and force water into the flask.

After boiling, an air bubble at 1 atm pressure and about 10 cc volume always remained in stopcock "B". To remove it the following procedure was used:

Stopcock " A " was closed and stopcock " E " was slowly opened to pull the bubble out through the vacuum pump. Stopcock " B " was closed and stopcock "C" turned to position 2 for about thirty seconds, then to position 3 to remove any air still in the system. Stopcock " E " was closed, stopcock "A" slowly opened and stopcock "B" opened slightly to admit water into the volume formerly occupied by the air bubble. Stopcock "B" was opened fully when water had ceased to flow. If any small residual bubble remained in the stopcock " B ", then stopcock " A " was
closed, stopcock "E" slowly opened, and after about thirty seconds the procedure was repeated.

Up to a dozen 1 mm diameter bubbles at atmospheric pressure were allowed to remain, as they would later be absorbed into the water, which was greatly undersaturated with respect to dissolved air at 1 atmosphere pressure.

The flask to be calibrated was carefully removed from the line, leaving stopcock " B " open. A glass tube with a $14 / 35$ female ground glass fitting on one end was placed over a corresponding male fitting above stopcock "B" and filled with distilled water. Then the flask stood overnight to reach temperature equilibrium and allow absorption of air bubbles in the water.

Before weighing, stopcock " B " was closed, the tube removed from the flask neck above stopcock "B", and the water removed from the inside of the flask neck. Grease and water were cleaned from the flasks exterior with trichloroethylene and the ambient temperature was recorded. The flask was then weighed.

The small amount of dissolved air still in the water probably could not affect the calibration results significantly because water saturated with air at 1 atmosphere pressure has a density lower than that of pure water by about 3 parts in 10^{6} (International Critical Tables, Vol. 3, Page 26). Since the water in the flask was greatly undersaturated, any error in density owing to dissolved air was negligible.
B. Calibration of Plenums

The design of a plenum is shown in Figure 2.

Figure 2. $\mathrm{CO}_{2} \mathrm{Plenum}$

With the plenum chamber previously evacuated, mercury was injected into the hollow plug of the stopcock with a syringe attached
to a teflon spaghetti tube which was small enough to pass through the neck above the stopcock into the plug. The bore of the hollow plug was about $2 / 3$ filled with mercury, and the stopcock was turned so that the bore hole was below the surface of the murcury, but not open to the plenum chamber. The air was removed from the space in the stopcock above the mercury in order to dislodge and remove any air bubbles trapped in the bore under the mercury. Air pressure was restored over the mercury, and the stopcock was opened slightly to admit the mercury into the plenum chamber slowly. When the plenum had been filled, the stopcock was opened fully to the chamber and again the air was evacuated from above the mercury to remove any further trapped air bubbles. After thirty minutes of temperature equilibration, the stopcock was closed and excess mercury poured out of the stopcock plug bore. Ambient temperature was recorded. The inside of the stopcock was then rinsed with nitric acid followed by distilled water and the plenum attached to a vacuum line and evacuated to dry out the water still remaining inside the stopcock. The plenum was removed and its exterior cleaned with trichloroethylene. The plenum was then weighed. The air bubble problem was less serious than in the case of the large flasks, since air does nat dissolve appreciably in mercury.

C. Preparation for Recalibration

The water was removed from the large flasks by removing the stopcock plugs and draining. The stopcocks were then cleaned of
grease and regreased. The flasks were evacuated to dry out all residual water. To remove mercury from the plenums, the stopcocks were opened, the plenums turned nearly upside down so that the mercury fell into the end of the stopcock plug near the handle, and the air removed from the stopcock plug. The mercury fell from the plenum chamber into the stopcock plug, whence it was poured out. The stopcock plug was removed, all surfaces cleaned of grease, and a teflon spaghetti tube pushed in so that its end was at the closed end of the plenum chamber. Through this tube the plenums were rinsed with nitric acid followed by water, all injected by a syringe attached to the tube. The aqueous liquids were shaken out of the plenum chambers. The plenum stopcocks were then air-dried and regreased. The plenum chambers were evacuated to dry. III. Calculations and Results

Nine weighings were made on each evacuated flask and nine more on each after filling with water, except that in the first filling of flask $C-8$, six weighings each were made on the evacuated and full flask. Each plenum was weighed thiee times evacuated and three times filled with mercury. Mean weights and volumes were then computed. The standard deviation for the weights of water or mercury was computed as the square root of sum of squares of standard deviations of weights empty and full.

A universal standard deviation for a single plenum weighing or large flask weighing was calculated by the formula

$$
\sigma_{\text {universal }}=\left(\frac{\sum_{i}^{N} \sum_{j}^{M}\left(x_{i j}-\bar{X}_{i}\right)^{2}}{\sum_{i}^{N} M_{i}-N}\right) 1 / 2
$$

where $X_{i j}$ was the j th weight measurement for the ith full or empty vessel; \bar{X}_{1} was the average weight for the i th vessel; M_{i} was the number of weighings made on the ith vessel; and N was the number of vessels. The σ for weight of water or mercury was $\sigma_{\text {universal }} \sqrt{2}$, since these weights were differences between two measured weights. The $\sigma_{\text {universal }}$ for volumes due to weighing uncertainty was $\sigma_{\text {universal }}$ for weights divided by liquid densities -- $1.0 \mathrm{~g} / \mathrm{cc}$ for water and $13.54 \mathrm{~g} / \mathrm{cc}$ for mercury.

Tables 1 and 2 list the results of the flask calibrations;
Table 1
Table 2 Table 3 Table 3 and 4 list the results of the plenum calibrations. Table 5 Table 4 Table 5 1ists the standard deviations, and standard deviations of the means.

The $\sigma_{\text {universal }}$ for volume measurements from individual fillings of flasks and plenums was calculated by the above formula, where $X_{i j}$ was the j th volume measurement of the i th vessel; X_{i} was the average volume for the vessel; M_{i} was the number of volume measurements made on the ith vessel; and N was the number of vessels. This was assumed to be ouniversal (total) for the volumes.

This $\sigma_{\text {universal }}$ for volume measurements was partitioned into uncertainty due to weighing and uncertainty due to filling changes. If it was assumed that $\sigma_{\text {universal }}^{2}$ (weighings) $+\sigma_{\text {universal }}^{2}$ (fillings) = $\sigma_{\text {universal }}^{2}$ (total), and $\sigma_{\text {universal }}$ (weighings) and $\sigma_{\text {universal }}$ (total) were already available then $\sigma_{\text {universal }}$ (fillings) could be calculated.

Standard deviations of the mean values were the $\sigma_{\text {universal }}{ }^{1} s$. divided by the square root of number of measurements made for each mean. Relative uncertainty was absolute uncertainty divided by the value of the measurement (a "standard" volume for flasks and plenums is indicated in Table 5).

In June of 1976 the Mettler P11N single-pan balance used in the above experiment was calibrated using Class S rhodium-plated brass weights. Two $1-\mathrm{kg}$ weights and one $2-\mathrm{kg}$ weight were used. In addition a glass bottle of mercury, weighed on the SeedererKohlbusch two-pan balance at 2826.8 g , was used. These weights were weighed on the P11N. The readings obtained from the P11N are listed in Table 6. Weighings were done for $1 \mathrm{~kg}, 2 \mathrm{~kg}, 2.8268$ kg , and 6.8268 kg. In general, it can be noted that "true" readings were obtained if the weights were quickly placed on the pan. If they were held so they gradually settled on the pan (over a period of 2-3 seconds) the scale reading was from $1 / 2$ to 2 grams low. The difference seemed to be independent of weight on the pan. Sometimes tapping the side of the balance caused the pan to settle further so that a truer reading was obtained. However, this did not cause concern as far as the volume calibrations were concerned for two reasons: (1) The volumes were based on differences between full and empty weights. Errors caused by "settling" the weights onto the pan would tend to cancel out. (2) σ for the volume was 0.64 cc ,
so this error could arguably be called statistical, since 3σ
is about 2 cc.
Apparently, however, the balance tends to bind at an erroneously low weight reading if the pan is pushed down too slowly by the weights.

TABLE 1. Flask Weights

TABLE 1. Flask Weights

Wt. Water $=5382.2 \mathrm{~g}$
Wt. Water $=5382.1 \mathrm{~g}$

TABLE 1. Flask Weights

Wt. Water $=5215.3 \mathrm{~g}$
$-1.6 .5$

TABLE 1. Flask Weights

Wt. Water $=5217.2 \mathrm{~g}$
21 Jan 74 Wt. No. Wt. (g) 22 Jan 74 .Wt. No. Wt. (g)

1	991.6	1	6208.4
2	992.1	2	6209.4
3	991.9	3	6208.6
4	991.7	4	6207.2
5	992.3	5	6209.5
6	992.6	6	6209.5
7	992.1	7	6207.7
8	991.9	8	6209.8
9	991.3	9	6209.1
Average	991.9	Average $=6208.8$	

TABLE 1. Flask Weights

Wt. Water $=5213.8 \mathrm{~g}$

```
Wt. Water = 5213.5 g
```

TABLE 1. Flask Weights

Flask No. C-11, Filling No. 6

Evacuated Flask Full Flask
24 Jan 74 Wt. No. Wt. (g) 25 Jan 74 Wt. No. Wt. (g)

1	991.2	1	6205.8
2	992.0	2	6205.9
3	992.1	3	6205.8
4	992.1	4	6205.8
5	992.4	5	6206.1
6	992.2	6	6205.9
7	991.7	7	6205.7
8	991.9	8	6205.7
9	991.6	9	6206.0
Average $=991.9$	Average $=6205.9$		

Flask No. C-3, Filling No. 1
Evacuated Flask Full Flask

28 Jan 74

Wt. No.	Wt. (g)
1	905.9
2	907.2
3	906.8
4	906.6
5	907.1
6	906.0
7	907.0
8	906.4
9	906.4
Average $=906.6$	

29 Jan 74
Wt. No. Wt. (g)
16211.3
26211.3
$3 \quad 6210.7$
$4 \quad 6210.9$
$5 \quad 6211.4$
$6 \quad 6210.6$
$7 \quad 6211.3$
$8 \quad 6211.3$
$9 \quad 6210.9$
Average $=.6211 .1$

Wt. Water $=5304.5 \mathrm{~g}$

TABLE 1. Flask Weights

TABLE 1. Flask Weights

Flask No. C-5, Filling No. 2

Evacuated Flask

Flask No. C-7, Filling No. 1
Evacuated Flask

Full Flask

1	881.8	1	6190.3
2	881.4	2	6190.6
3	881.3	3	6190.3
4	881.7	4	6190.9
5	880.8	5	6190.6
6	881.3	6	6190.9
7	881.9	7	6190.2
8	882.0	8	6190.0
9	881.7	Average $=6190.5$	

30 Jan 74 Wt. No. Wt. (g)

Wt. Water $=5309.0 \mathrm{~g}$

Wt. Water $=5339.1 \mathrm{~g}$

TABLE 1. Flask Weights

TABLE 1. Flask Weights

TABLE 1. Flask Weights

TABLE 1. Flask Weights

TABLE 2. Flask Volumes

Date	$\begin{aligned} & \text { Book } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Wt. of } \\ & \text { Water }(\mathrm{g}) \\ & \underline{\sigma}^{(\mathrm{g})^{+}} \begin{array}{l} \text { Water temp. } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \end{aligned}$			Density of Water (g/cc)	Computed Flask Volume \qquad
			Flask No. C-3.				
29 Jan 74	1	134	5304.5	0.64	21.0	0.997992	5315.2
30 Jan 74	1	135	5303.9	0.64	21.2	0.997948	5314.8
			Flask No. C-5			erage volu	5315.0 cc
29 Jan 74	1	136	5309.7	0.64	21.0	0.997992	5320.4
30 Jan 74	1	137	5309.0	0.64	21.2	0.997948	5319.9
						Average volume $=5320.2 \mathrm{cc}$	
			Flask No. C-7				
29 J.an 74	1	138	5339.1	0.64	21.0	0.997992	5349.8
30 Jan 74	1	139	5339.5	0.64	21.2	0.997948	5350.5
						Average volume $=5350.2 \mathrm{cc}$	

TABLE 2. Flask Volumes

* Handbook of Chemistry and Physics, 43rd Edition, page 2155, Chemical Rubber Publishing Co., 1962.
$+\sigma_{\text {universal }}$ for Mettler P-1l balance given.

TABLE 3. Plenum Weights

Plenum No. P-2

TABLE 3. Plenum Weights

Plenum No. P-3

TABLE 3. Plenum Weights

Plenum No. P-4

Evacuated Plenum
Full P1enum

Evacuated P1enum
Full Plenum

Wt. No. Wt. (g)

Wt. Mercury $=23.644 \mathrm{~g}$ *
Filling No. 5
11 Mar 7412 Mar $74 \quad 1 \quad 81.169$ $257.519 \quad 2$ 81.167

Average $=57.519 \quad$ Average $=81.168$
Wt. Mercury $=23.646 \mathrm{~g}$ *

* Buoyancy correction for weights $=-0.003 \mathrm{~g}$ added to weight of mercury.

TABLE 3. Plenum Weights

Plenum No. P-5

* Buoyancy correction for weights $=-0.004 \mathrm{~g}$ added to weight of mercury.

* Buoyancy correction for weights $=-0.004 \mathrm{~g}$ added to weight of mercury.

[^0]
TABLE 4. Plenum Volumes

* Obtained from linear interpolation of tabulated densities (Handbook of Chemistry and Physics, 43rd Edition, page 2157, Chemical Rubber Publishing Co., 1962).
${ }^{+}$Equal to density in $\mathrm{g} / \mathrm{ml}+1.000027$.
$\stackrel{1}{\sigma}_{\sigma}$
$\sigma_{\text {universal }}$ for solution balance given.

TABLE 4. Plenum Volumes

Plenum No. P-3

13.5433	13.5429	1.6359	
13.5416	13.5412	1.6362	
13.5436	13.5432	1.6359	
13.5440	13.5436	1.6358	
13.5413	13.5409	1.6360	
Average volume $=1.6360 \mathrm{cc}$			

$$
\begin{array}{cl}
1 \text { lume } & =1.6360 \text { cc } \quad s_{i}-1 / 10400.0002 \\
\sigma_{\text {main }}=.00007
\end{array}
$$

| 26 Feb 74 | 2 | 11 | 23.646 .001 | 20.2 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 1 Mar 74 | 2 | 11 | 23.640 .001 | 21.2 |
| 54 Mar 74 | 2 | 12 | 23.637 .001 | 21.9 |
| 8 Mar 74 | 2 | 12 | 23.644 .001 | 21.1 |
| 12 Mar 74 | 2 | 13 | 23.646 .001 | 20.9 |
| | | | 23.6426 | $1 / 5900$ |
| | | | $5=.040$ | |

13.5457	13.5453	1.7457		
13.5433	13.5429	1.7456		
13.5416	13.5412	1.7456		
13.5436	13.5432	1.7458		
13.5440	13.5436	1.7459		
	Average volume $=1.7457 \mathrm{cc}$			
$\sigma_{\text {mean }}$	$=.0000$			

*Obtained from linear interpolation of tabulated densities (Handbook of Chemistry and Physics, 43rd Edition, page 2157, Chemical Rubber Publishing Co., 1962).
${ }^{+}$Equal to density in $\mathrm{g} / \mathrm{ml}+1.000027$.
${ }^{\not} \sigma_{\text {universal }}$ for solution balance given.

TABLE 4. P1enum Volumes

TABLE 4. Plenum Volumes

TABLE 5. Uncertainties in Weight and Volume Measurements

Vessel Type	$\sigma_{\text {universal }}$ Individual Weighings	$\sigma_{\text {universal }}$ Weights of Liquid	${ }^{\sigma}$ universal Volume due to Weighings	Uncertainty in Mean Volume due to - Weighings	Relative ${ }^{\dagger}$ Uncertainty in Mean Volume due to Weighings
Flask	0.45 g	0.64 g	0.64cc	0.21cc*	$4.0 \cdot 10^{-5}$
Plenum	0.73 mg	1,03mg	$0.76 \cdot 10^{-4} \mathrm{cc}$	$0.44 \cdot 10^{-4} \mathrm{cc}^{\dagger}$	$2.2 \cdot 10^{-5}$

* For flasks weighed nine times.
\dagger All plenums were weighed three times.
† Flask volume was taken as 5300 cc and plenum volume was taken as 2 cc for relative error calculations.

TABLE 5. Uncertainties in Weight and Volume Measurements

中 All plenums were weighed three times.
** For flasks filled twice during volume calibration.
$\dagger \dagger$ All plenums were filled five times during volume calibration.
† Flask volume was taken as 5300 cc and plenum volume was taken as 2 cc for relative error calculations.

TABLE 6. Calibration of Mettler P11N

Single-Pan Analytical Balance

1 Kg Wt.		$\underline{2 \mathrm{Kg} \text { Wt. }}$	2826.8 g Bottle Hg		2826.8 g (Wts. + Bottle Hg)	
Wt. No.	Wt. (g)	Wt. No.	Wt. (g) Ut. No.	Wt. (g)	Wt. No.	Wt. (g)
1	999.8	1	2000.1 1	. 2827.1	1	6827.2
2	998.5*	2	2000.12	2827.0	2	6827.0
3	1000.0	3	2000.13	2826.9	3	6827.1
4	998.9*	4	1998.2* 4	2827.0*	4	6826.7*
5	1000.2	5	1997.0 (1999.3)*5	2825.5*	5	6826.1 (6827.0)*
6	998.1*	6	1998.9*	2824.6	2)*6	6824.7 (6826.3)*

* Settled slowly onto the pan.

Numbers in parentheses were obtained by tapping the side of the balance while the weights were still on the pan.

[^0]: * Buoyancy correction for weights $=-0.005 \mathrm{~g}$ added to weight of mercury.

